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ABSTRACT 

(1) Triple-negative breast cancer (TNBC) is a severe clinical challenge in need of new 

therapies, but traditional drug development pipelines are time-consuming and expensive. More 

wholistic methods are needed to efficiently evaluate multiple drug targets in the context of 

TNBC. Drug response models aim to translate in vitro drug response measurements to in vivo 

drug efficacy predictions. While commonly used in retrospective analyses, my goal was to 

investigate the use of drug response modeling methods for the generation of novel drug 

discovery hypotheses in TNBC. (2) First, I review the current state of pan-cancer cell line 

screening datasets as these screening datasets are necessary for building drug response models. 

(3) Using one of these screening datasets, I generate models of drug response, which are then 

used to obtain imputed sensitivity scores for hundreds of drugs in over 1000 breast cancer 

patients. After examining the data for relationships between drugs and patient subtypes, I 

identified the Wee1 inhibitor AZD-1775 and an XPO1 inhibitor as compounds predicted to 

have preferential activity in TNBC. For AZD-1775, the imputed drug response formed 

significant associations with meaningful markers of drug response as well as the compoundõs 

mechanism of action. AZD-1775 also efficiently inhibited the growth of preclinical TNBC 

models. (4) XPO1 in vitro inhibition also associated with the TNBC subtype. RNA-Seq analysis 

implicated two distinct mechanisms for XPO1 inhibition-mediated cell death, with the TNBC-

based mechanism being consistent with the pan-cancer gene set associations.  (5) Overall, the 

work here develops a framework to turn any cancer transcriptomic dataset into a dataset for 

drug discovery and shows the frameworkõs utility to quickly generate meaningful drug discovery 

hypotheses for a cancer population of interest. 
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CHAPTER 1: Background & Significance  

òYes, the thing about cancer is to cure it.ó (Huggins, 1979) 

Near where I sit writing this document hangs an old poster from Charles Hugginsõs 

former lab. The poster also starts with this quote. Itõs evocative. It is simple and gets at the heart 

of translational research. It  also evokes the period, a time when cures were discussed, and maybe 

magic bullets were just around the corner for every cancer. It comes from the context of treating 

hormone-dependent cancers where a new and clear dependency had been discovered such that 

òfollowing hormonal intervention, the investigator sees cancer melt away in man and animalsó 

(ibid).  

In the 42 years since Huggins published that quote, there has been much progress in 

understanding the complexities of cancer. We have invented a great number of therapies in the 

chase to òcureó the disease. But we have also watched and identified resistance mechanisms as 

tumors evolve from these therapies, even the cancers that were once hormone dependent. For 

several cancers, we have even begun move away from the notion of òcuringó the disease. Some 

have suggested the goal should not be to òcureó but to manage cancer, to continually adapt 

therapy so that the patient survives long enough for something else to come along.  

With trying to understand the landscape of cancers and tumor evolution, we have 

generated massive amounts of cancer ò-omicsó (genomics, transcriptomics, proteomics) data. 

Patient tumors can be routinely sequenced to provide a list of DNA mutations or a snapshot of 

RNA expression patterns. There is so much data, but with so much data it is easy to get lost in 

the forest of cell and molecular biology and not be able see through to an appropriate therapy. 

Triple-negative breast cancer (TNBC) is a perfect example. There have been copious studies 
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describing this subtype of breast cancer and thousands of TNBC tumors have been sequenced 

and audited, but this has translated to relatively few therapeutic options for patients. This disease 

is, unlike most breast cancers, never hormone dependent and is still waiting for its òcure.ó 

Still, my research goal is not far off from the sentiment expressed by Huggins in this 

quote. The ultimate goal of my research is to identify therapies that could lead to the more 

effective treatment of TNBC. By directly integrating the plethora of patient data with preclinical 

drug response data, I aim to probe drug relationships in the context of patient molecular 

information. My hypothesis is that drug response modeling can be used to facilitate the 

translation of preclinical drug data and be used as a novel form of drug discovery.  

To this end, I will begin by reviewing the existing literature on TNBC as well as drug 

response modeling. This will provide the necessary context for my dissertation work that 

reviews the available datasets for drug response modeling, uses drug response modeling to 

generate drug repositioning and drug discovery hypotheses in TNBC, and subsequently validates 

these hypotheses in the search for new therapeutic interventions for these patients.    

TRIPLE-NEGATIVE BREAST CANCER 

Breast cancer is the most common cancer among women and accounts for the second 

most deaths among women. Breast cancer has perhaps one of the longest histories of 

personalized medicine in that molecular subtypes of breast cancer have been long established. 

Patients are stratified into Hormone Receptor (HR) positive (estrogen receptor (ER) or 

progestogen receptor (PR) expressing), HER2 positive (Human Epidermal Growth Factor 

Receptor expressing) or òotheró classifications. This other category is labelled Triple-Negative 

Breast Cancer (TNBC) for lacking expression of any of the three previously mentioned 
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oncogenic receptors. Each subtype also gets a corresponding therapy. ER and PR-positive 

tumors get treated with hormonal therapy, most commonly selective ER modulators or 

degraders. HER2-positive patients receive and anti-HER2 therapy in the form of a kinase 

inhibitor (such as lapatinib) or a monoclonal antibody against HER2 (e.g. trastuzumab). On the 

other hand, TNBC cancers are inherently difficult to treat, as unlike the other breast cancer 

subtypes, they are defined solely by the absence of a distinct molecular target.  

TNBC comprises approximately 10-20% of all breast cancer cases. This number can 

drastically fluctuate among different populations. In African Americans, the number is estimated 

to be closer to 25-30 percent, with some African communities having upwards of 46% of all 

cases be TNBC (Siddharth and Sharma, 2018). Latina women (Serrano-Gómez, Fejerman and 

Zabaleta, 2018) and younger women (Newman et al., 2015) also have an increased proportion of 

TNBC patients. Although a smaller segment of the overall breast cancer population, TNBC 

accounts for a disproportionate number of breast cancer deaths. TNBC has the lowest 5-year 

overall survival among the breast cancer subtypes regardless of race or ethnicity (Howlader et al., 

2018; DeSantis et al., 2019). Beyond this, TNBC is known for its aggressive behavior and has 

been associated with high mean tumor size, higher grade of tumors at diagnosis as well as 

increased recurrence rate and metastasis after diagnosis. Metastasis is also more likely to occur in 

the lungs and brain when compared to ER+ disease (Aysola et al., 2013).  

Part of the explanation for the aggressive behavior is biological and caused by a diverse 

molecular landscape. TP53 is the most commonly mutated gene in TNBC, and occurs at a rate 

of approximately 70-88% of all TNBC tumors compared to an overall prevalence of only 

around 30% in all breast cancer patients (Abubakar et al., 2019). However, aside from TP53 
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mutations, only PIK3CA, PTEN, KMT2C and RB1 have been identified as mutated in greater 

than 5% of TNBC patients. MYC amplification is the most common copy number alteration in 

TNBC, and in one study occurred in 81% of patient samples. Other common copy number 

alterations (occurring in 40-58% of patients) were amplifications in in E2F3, IRS2, CCNE1, 

EGFR, NFIB, CCND1 and MYB and losses in CHD1, PTEN, RB1, and CDKN2A. (Jiang et 

al., 2019; Zhao et al., 2020) 

Despite some recent progress, TNBC patients continue to have the worst 5-year overall 

survival among breast cancer patients, and most TNBC patients are still treated with cytotoxic 

chemotherapies (Li et al., 2017). There is a clear and present need to identify new and effective 

therapies for TNBC to help reduce morbidity and mortality in these patients. 

IMPUTING DRUG RESPONSE IN PATIENTS 

Traditional drug development pipelines are time-consuming and take years for target 

identification, validation, and subsequent design optimization of the lead candidate compounds 

(Ashburn and Thor, 2004). While these approaches are indispensable for generating new 

therapeutic compounds, methods are needed to holistically explore and expand the potential use 

of existing drugs to different cancer contexts. The high costs, low success rates, and protracted 

development time for establishing new clinically-viable compounds has generated interest in 

expanding the use of (utility extension) and finding new uses for (repurposing/repositioning) 

existing drugs (Pushpakom et al., 2019; Wong, Siah and Lo, 2019). The challenge that remains is 

to identify appropriate contexts for drug repositioning and utility extension. Pathway mapping 

and signature-based approaches are both examples that utilize gene/protein expression patterns 

to identify such opportunities (Hurle et al., 2013). In vitro screening is another common 

approach to test existing drugs for phenotypic changes in cancer cell lines (Corsello et al., 2020). 
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In the area of precision medicine, these in vitro screening data are used as the inputs in 

machine learning models that aim to obtain accurate predictions of patient drug response. 

Researchers have developed many ways to build models depending on the type of input data and 

desired algorithm (reviewed in (Azuaje, 2017)). In the lab of Stephanie Huang, we previously 

established a general approach to impute/predict drug response in patients that was shown to be 

accurate in retrospective analyses of clinical studies (Geeleher, Cox and Huang, 2014). Our 

method involves building predictive models between baseline gene expression values in cell lines 

and their respective drug efficacy metrics (e.g., EC50 or AUC). In our original publication, this 

modeling approach was shown to be equally good or better at predicting patient response as the 

gene signatures derived directly from the clinical datasets. This retrospective study and others 

(Geeleher et al., 2015; Li et al., 2015) have shown that our methodology is accurate and useful 

for identifying meaningful relationships between drug response and patient populations. 

Most advancement in drug imputation has focused on improving modeling methods so 

that researchers can better stratify òresponderó from ònon-responder.ó Recently we have begun 

to investigate extensions beyond obtaining accurate predictions of patient response. For 

example, we previously linked patient imputed drug response with genomic features and, in 

doing so, recapitulated known and discovered new biomarkers of drug response (Geeleher et al., 

2017). Here I propose a novel use case for patient drug modeling: drug repositioning and utility 

extension. I hypothesize that I can flip the traditional paradigm of patient drug response 

modeling in order to identify drugs targeted towards a particular patient population. That is, 

instead of stratifying patients into responder/non-responder populations, I could begin with the 

patient population I would like to respond and test for compounds predicted to target this 

patient subset. Overall, I contend that drug sensitivity prediction methods can fill in the often-
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missing pharmacological data from clinical patient datasets, providing a virtual drug screen of 

patients to hundreds of compounds and allowing for the identification of trends among imputed 

drug response, clinical features, and patient subtypes. 

OVERVIEW 

Drug response is complex. There are many pathway dependent factors that may lead to 

drug sensitivity or resistance as well as more general multidrug resistance mechanisms. Still, drug 

imputation can be quite accurate. This accuracy indicates that the modeling is able to condense 

large amounts of -omics and drug sensitivity data into drug response heuristics, something much 

more interpretable and more easily translated than multidimensional -omics data. Additionally, 

the molecular target(s) of a compound are not always known, but the mechanism of action is 

not needed for translational models of drug response. The models are built with whole-genome 

flexibility, which allows us to assess compounds regardless of how well they are annotated unlike 

in other more traditional forms of drug discovery hypothesis generation.  

Drug response models can directly link biological differences to differences in drug 

sensitivity. Drug response modeling, then, has the potential to be highly translational. Through 

imputing drug response in patients via drug response modeling, we can transform any clinical 

cancer dataset to one primed for drug discovery. Questions, such as what patient clinical or 

genomic features associate with a compoundõs efficacy, can now be readily answered. Searching 

this data for drug repositioning and drug discovery opportunities could lead to the identification 

of compounds more tailored to particular patient populations and ultimately impact patient care. 

While this is a great theoretical potential for drug response modeling, testing is needed to 

determine whether modeling-based drug discovery hypotheses are meaningful. TNBC makes an 

excellent context for which to study drug imputation as TNBC is well-studied, biologically 
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distinct from other breast cancer, and lack effective targeted therapeutics. The significance of 

this work is high and two-fold: drug repositioning analyses in TNBC could lead to the 

identification of novel treatments and impact patient care for thousands of breast cancer 

patients as well as showcase a novel way to perform drug discovery in cancer.   

My goal is to evaluate drug response modeling as a tool for drug discovery and use it in 

order to identify and accelerate therapies for TNBC. To understand the strengths, weaknesses, 

and biases of the cell-line based drug response modeling, it is important to first review the 

available datasets which serve to train the models (Chapter 2). Using these datasets, I built 

models of drug response and looked for compounds that could lead to the more effective 

treatment of TNBC in Chapters 3 and 4. Chapter 3 covers my work identifying AZD-1775, a 

Wee1 kinase inhibitor, for TNBC as well as validation of both the drug response model and the 

efficacy of AZD-1775 to inhibit growth of TNBC cells. In Chapter 4, I discuss the XPO1 

inhibitor KPT-330 and the possible mechanisms of action that allows the for the efficient killing 

of breast cancer cells. Methods, results, and discussions are included for each individual chapter. 

Finally, Chapter 5 serves as a summary of this work, a discussion of additional uses for the 

imputation methodology, and a look-ahead at other future directions. 
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CHAPTER 2: Cell Line Datasets Review and Impact on Drug Response 

Modeling  

2.1 INTRODUCTION  

Cancer cell lines (CCLs) have been used in phenotypic screens for potential oncology 

compounds for decades. CCLs are perfect tools for drug screening as they are easy to grow in 

multi-well plates and easy to assay for phenotypic changes such as viability or apoptosis 

induction. Beyond this, CCLs are easy to manipulate genetically. shRNA and more recent 

advances in CRISPR technology have allowed us to knockdown or knockout every gene in gene 

in the genome in CCLs and measure the effects on the cells. Advances in liquid handling 

systems, such as acoustic dispensing of extremely small volumes, has made screening large 

number of CCLs against large compound libraries even easier, faster, and as a result more 

common place.  

 The history of publicly available CCL screens goes back several decades to the NCI-60. 

The NCI-60 began in the 1980s with the goal to evaluate and facilitate the translation of drugs in 

oncology. As a public platform, any drug could be submitted to screen against 60 CCLs (the 

CCLs have changed over the years, but most have remained the same). To date, the NCI-60 

initiative has screened over 100,000 compounds with much of that screening data available 

publicly. This screen was the first to perform an integrated analysis of gene expression and it 

pharmacological sensitivity data in a large panel of cell lines (Scherf et al., 2000). The screen and 

this analysis is credited for making a number of important drug discoveries in cancer 

(Shoemaker, 2006). 

Since 2010, many other institutes have provided their own phenotypic screening data. 

These screens have typically focused on expanding the number of cell lines screened against 



9 

 

each compound and providing genomic and transcriptomic data for better integration that 

allows for biomarker discover. Examples include the Broad Institutes Cancer Cell Line 

Encyclopedia (CCLE), which has been subsequently updated into the Cell Therapeutics 

Response Portal (CTRP) and the Sanger Instituteõs Genomics of Drug Sensitivity in Cancer 

(GDSC) as part of their Cancer Genome Project. These cell line screens have also provided 

genomic and transcriptomic information for a majority of the cell lines screened. This allowed 

the original publications to systematically identity markers of drug sensitivity in CCLs (Garnett 

et al., 2012) as well as identify mechanism of action for certain drugs by correlation analysis 

(Rees et al., 2016). Beyond compound screening, many efforts have been made to use siRNA 

and CRISPR, the most prominent publicly available dataset for these screens (called Achilles) is 

another effort from the Broad Institute.  

For my dissertation work, it became necessary to investigate and become familiar with 

these resources as they serve as the training data for the imputation models. It is only with the 

plethora of genomics and drug efficacy data provided by these large publicly available screening 

datasets that we are able to build models that utilize the entire transcriptome of cells to model 

drug response metrics. Thus, it is important to know the limitations regarding how the screens 

were performed as well as potential biases that might exist within this data to know how the 

potential biases and limitations of the models.  

In order to better understand these resources, I performed a review of the publicly 

available drug screening data with Jessica Fessler and Alexander Ling of the Huang lab. This led 

to the review Alex and I co-first authored entitled òMore than Fishing for a Cure: The Promises 

and Pitfalls of High Throughput Cancer Cell Line Screensó (Ling et al., 2018). Jessica started this 
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venture in a lab rotation where she helped to identify potential screening datasets to include. 

Alex and I took over the project where we identified additional datasets and summarized the 

data. In general, the summary of the shRNA and CRISPR datasets was performed by Alex, the 

summary of the compound data was performed by me, and the summary of the CCL data was a 

joint effort (see this chapterõs methods for more detailed breakdown). While the backbone of 

our publication is similar to this chapter, there are a number of significant changes that make the 

review presented here new and unique. I performed and wrote up this updated analysis 

exclusively.  

This chapter differs from the original review in a number of important ways. First, only 

the data from compound screens that use cell lines from multiple tissue of origins (pan-cancer) 

are reviewed since these screens are more relevant for the model building done in later chapters. 

For specific information on the genomic screens or on single-cancer screens (such as (Daemen 

et al., 2013; Teicher et al., 2015; van de Wetering et al., 2015), etc.) or the genomic screens (such 

as (Cheung et al., 2011; Aguirre et al., 2016), etc.), the reader is referred to that the original 

review. Additionally, for the purposes of the original review, we included screening data for 

historic reasons which was removed for this dissertation (e.g. CTRPv1). Finally, and most 

importantly, since the publication of the review in 2018, there has been a significant change and 

update to the GDSC and PRISM datasets. Chapters 3 and 4 rely in particular on data from the 

GDSC and CTRP datasets, so additional details are given for these datasets in the text and 

figures. The data reviewed in this chapter reflects all of these changes as well as some additional 

analyses and as such is markedly different from the original publication, even though most of 

the overarching conclusions remain similar. A summary of all the publicly available datasets 

reviewed in this dissertation can be found in Table 2.1.  
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Institution  Data Set Title 
# 

Cell 
Lines 

# of Tested 
Compouds 

Citation 

Wellcome Trust 
Sanger Institute 

and 
Massachusetts 

General Hospital  

GDSC1 987 367 Garnett et al., 2012; Iorio et al., 2016 

GDSC2 809 198 Garnett et al., 2012; Iorio et al., 2016 

NCI 

NCI60 74 49,278 https://wiki.nci.nih.gov/display/NCIDTPdata/ 

NCI-
ALMANAC 

60 
104 (5,334 

combinations) 
Holbeck et al., 2017 

Broad Institute 
CTRP v2 887 496 Seashore-Ludlow et al., 2015 

PRISM 
Repurposing 

578 4,518* Corsello et al, 2020 

GlaxoSmithKline GlaxoSmithKline 310 19 Greshock et al., 2010 

Genentech gCSI 429 16 Haverty et al., 2016 

Institute for 
Molecular 
Medicine Finland 

FIMM 50 52 Mpindi et al., 2016 

Table 2.1. Available in vitro CCL Screen Datasets. 

This table provides summary information for the CCL screens I review in this chapter. Cell line and 
compound numbers reflect the latest releases of each dataset (removing any duplicated cell lines or 
compounds). Further details for each study (except GDSC2) can be found in our published paper Ling et 
al., 2018. 

 

2.2 METHODS 

Identifying High-Throughput Cancer Cell Line Screens 

Using online search engines, PubMed, and previous reviews (such as as (Smirnov et al., 

2018)), we compiled a list of CCL screens with publicly available data for the review. For this 

chapter, I have removed screens that are simply older screens that have evolved into newer 

screens (e.g. CTRPv1 which has evolved into CTRPv2 or earlier versions of a dataset). A few 

other inclusion criteria were used: greater than 10 compounds screened, greater than 50 pan-
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cancer cell lines used, and data that was publicly available and easily accessible. See Table 2.1 for 

the screens included. 

Investigating Trends in Cell Line Data In Cancer Cell Line Screens 

 Alex Ling worked primarily on harmonizing and annotating the cell line information 

using Cellosaurus (https://web.expasy.org/cellosaurus/), BioSample (Barrett et al., 2012) and 

COSMIC (Forbes et al., 2017). The harmonized data from the original publication is also used 

here, though updated with the data from the new drug screening datasets. I also updated the 

ethnicity analysis using by integrating inferred genetic ancestry from (Dutil et al., 2019). For 

ancestry, the predominant ancestry (highest percentage in any ancestry category) was used. 

European ancestry (North and South) were combined similar to the paper.   

 We both contributed to the published analysis of the trends in cell line data including the 

proportion of cell lines screened to proportion of cancer incidence and mortality from the 

(Siegel, Miller and Jemal, 2017) data, as well as basic distribution regarding the patient age when 

the cell line was collected, cell line gender, and the cell line ethnicity. The data presented here is 

an update on the original analysis given the inclusion criteria from above and was solely 

performed by me. Calculations and graphing were all performed in R, graphs were made using 

the ggplot2 R package (Wickham, 2009).  

Annotating and Summarizing Compound Information 

Compound names were obtained from the original cell line screening publications or 

relevant online data repositories. I then harmonized the compound identifiers to correct for 

inconsistent formatting and name usage. Using PubChem's Identifier Exchange Service 

(https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi), I identified synonyms for all 

named compounds in the original datasets and to convert these synonyms to PubChem IDs. 
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After checking the results manually, some compounds still didnõt match/harmonize between the 

datasets. To ensure the matches, I then took the list of PubChem ID and matched it back to 

compound synonyms and then once again matched that list to PubChem IDs. This created the 

highest degree of overlap such that even compounds that were highly related, for example 

irinotecan and its active metabolite SN-38, would then be identified as the same compound, 

which was deemed appropriate for our purposes. The results were further checked and curated 

as needed to ensure correctness. For information on the molecular targets and clinical phase of 

the compounds, The Drug Repurposing Hub (Corsello et al., 2017) was used to add information 

for any drug that used in this dataset. For any drugs that werenõt contained in The Drug 

Repurposing Hub, I used the annotated information from the original publication or the 

updated web portals if the datasets contained similar annotations.  This resulted in a list of drugs 

with their original identifiers from each CCL screen, a harmonized identifier, their clinical phase, 

their general mechanism of action, and their specific molecular targets. This information is 

provided in our Ling et al 2018 publication as Table S3. 

I used R and the msigdbr package (MSigDB gene sets R package, no date) to obtain genes 

and pathway information to map compound molecular targets onto pathways. I utilized the 

Canonical Pathways gene set (Milacic et al., 2012; Liberzon et al., 2015; Kanehisa et al., 2017; 

Fabregat et al., 2018) (http://www.biocarta.com/) from the Broad Instituteõs MSigDB database 

(Subramanian et al., 2005a; Liberzon et al., 2015) for the pathway analysis.   

2.3 RESULTS 

Trends and Details for Screened Cancer Cell Line  

Cancers are heterogeneous, and so should the models of cancer. To recapitulate the 

diversity seen in cancer, CCL screens need to utilize a wide variety of cancer cell line types. The 
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choice of which cell lines to include in a screen is an important one. NCI-60 for example only 

uses 60 cell lines, so the number of cancers that can be represented is limited. Also, limitations 

on the number of models available for each tissue of origin vary. To continue on the example of 

NCI-60, this dataset includes 9 different tissue types, with tissues being represented by as few as 

2 cell lines (prostate) or up to 9 (lung). Prostate cancer researchers have very few prostate cancer 

cell lines available compared to other similarly common cancers like lung and breast cancer. 

Other characteristics of the cell line could be important to consider besides just tissue of origin, 

but could include the age, gender, and ethnicity of the patient from which the cell line was 

obtained. All of these are clinically relevant features that should ideally match the characteristics 

of patients.  

To assess the diversity in the CCLs screened in these pan-cancer datasets, I obtained 

annotated cell line data from all the datasets listed in Table 2.1. Among these datasets were 1,494 

unique cell lines covering over 200 different disease classifications and 30 tissue of origins. 

These disease characteristics span from very common cancer types (e.g. lung) to rare cancers 

(e.g. leiomyosarcomas) and highly specific subtypes (e.g. Acute biphenotypic leukemia). To give 

better context to the distribution of these cancer types, I correlated the cancer tissue of origin 

with the American Cancer Societyõs (ASC) estimated number of cases and deaths for the year 

2021 (Siegel et al., 2021). Interestingly, the number of cancer cells screened for a tissue of origin 

was highly correlated with the estimated incidence and death rate (Figure 2.1 A-B, spearman 

correlation equal to 0.69 and 0.68 respectively). The pan-cancer drug screens have, it seems, 

captured part of the heterogeneity seen in cancer type distribution and prioritizing cancers for 

which the incidence and death rates are highest.   
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Figure 2.1. Screened Cell Lines Capture A Degree of Heterogeneity and Clinical Relevance Seen in 
Patients.   
A-B Correlation between the estimated number of cancer cases (A) or number of estimated deaths (B) in 2021for the 

indicated cancer types (obtained from the American Cancer Society and Siegel et al., 2021) and the number of unique 

cell lines screened from each cancer type. (C) Histogram of age of the patient at the time of CCL collection for all 

unique CCLs. (D-E) Proportional bar plots for the relative distribution of cell line sex (D) and ethnicity (E). For E, the 

number printed on top is the total number of CCLs with ethnicity information that appear in at least that number of 

datasets. For example, the first column represents the ancestry proportions used in all 1427 cell lines with ancestry 

information. The second column is the same for the 792 CCLs that appear in two or more institutional screens, etc. This 

is to show that European ancestry is overrepresented both overall and more so in the most commonly used CCLs.  
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Cancer heterogeneity doesnõt just come from tissue of origin, but also other clinical 

patient features such as age, sex, and ethnicity. A histogram for the age of the patient from 

which a cell line was generated is shown in Figure 2.1C and does roughly correspond with 

expected patient ages with the mode centered around 60. Pediatric cancers are also fairly 

proportionally represented as an additional increase in the bars at less than 10 years of age. 

Broken down by cancer type, the two most common cancers types for the under 10 years of age 

CCL group are also from brain or leukemic origins.  

However, for sex (Figure 2.1D) and ethnicity (Figure 2.1E) the breakdown isnõt quite 

proportional to expectations. Sex is not always distributed evenly for all cancer types. For 

example, for oral cavity and pharynx tumors as well as the urinary system cancer categories, men 

do have an incidence rate that is 2.55 times higher and 2.40 times higher than females 

respectively and the CCL breakdown is aligned (more-or-less) with this breakdown. On the 

opposite side, the CCL gender breakdown for the genital systems category is more a showcase 

for how few prostate cancer cell lines are available so it is unsurprising that most CCLs in this 

category are female. However, for two categories there is some unevenness that canõt be 

accounted for in this way: digestive and respiratory cancers. Looking that the cancer subcategory 

data, the second largest imbalance is that there are 2.88 times as many male lung cancer CCLs to 

female CCLs (216 male CCLs to 75 female CCLs) when the ACS data shows these to be nearly 

even in regards to both estimated new cases (119,000:117,000) and deaths (69,000:64,000). The 

largest subcategory imbalance is for liver cancer, which has 7.333 times as many male to female 

CCLs (22:3). Although liver cancers are more common in men, the amount is only 2.4 times for 

incidence (30,000:12,000) and 2 times for death (20,000:10,000). Since sex differences can affect 

the biology of cancer and therefore the response to treatment  (Rubin et al., 2020), it is important 
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to increase the diversity of these CCLs, especially if CCLs are going to be used to study the 

effect of sex-specific cancer phenomenon and drug sensitivity.  

Ethnicity is generally poorly annotated during the creation of CCLs, so efforts have been 

made to impute ethnicity for these CCLs (Dutil et al., 2019). It is readily apparent that most 

CCLs are from white European or Asian descent (Figure 2.1E). Not only this, but if we look at 

the CCLs that are most commonly used across the institutions (those that appear in 3 or more 

different screening institutions), White/European ancestry dominates the CCLs with 141/171 

(82%) or 41/43 (95%) of CCLs being of European ancestry for CCLs that appear in 4 or 5 

institutions respectively. It is certainly true that European ancestry is highly over-represented in 

CCLs overall and in particularly in the most commonly used CCLs. Additionally, for the Asian 

CCLs, over 80% of Asian CCLs are East Asian, specifically from Japanese origin.  Looking at 

ethnicity by tissue of origin, 3 cancer subcategories, there were no CCLs representing African 

ethnicity. Hispanic and Native American categories are not consistently given in CCL ethnicity 

annotations, but based on the available data, only one category had a CCL of Hispanic ethnicity 

and five categories had a CCL of Native American ethnicity.  

Compound Screens Cover a Diverse Set of Cancer-Relevant Targets 

Apart from having a diverse set of CCLs that represent the heterogeneity seen in cancers, 

impacting a diverse set of molecular targets is an equally important aspect of CCL screens. All 

together there are over 50,000 unique drugs across all the screening datasets. However, this 

impressive number is almost solely due to the NCI-60, which has screened a large number of 

probes or chemicals without annotation data. All the other screens combined have only screened 

a total of 2,029 unique drugs. To assess the diversity of the gene targets of the compounds 

included in the 9 screens, I identified the molecular targets of screened compounds using the 
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Broad Drug Repurposing Hub (Corsello et al., 2017) and any target data provided by the 

screening datasets themselves. I was able to match clinical trial status, mechanism of action, and 

gene target information for over 2,000 compounds.   

 Regarding clinical stage, of the 2,029 compounds with annotated FDA clinical trial 

information, 843 compounds were already FDA approved and 623 more had been in some 

phase of clinical trial (Figure 2a). Surprisingly, the distribution shown in that figure doesnõt 

change after filtering out the PRISM repurposing screen, which almost exclusively screened 

approved non-oncology compounds. A total of 1,538 unique gene products were impacted by 

the 2,363 compounds with annotated molecular targets. 910 genes were targeted by more than 

one compound, meaning 628 genes were only targeted by one drug in any of these datasets. It 

should be noted that compounds often had more than one molecular target, with 

1237compounds annotated as hitting at least 2 protein targets. Figure 2.2B shows the ten most 

frequently targeted genes, which were each targeted by at least 38 unique compounds in the 

CCL screens I reviewed. Encouragingly, many of these top gene targets are recognizable as 

important in cancer. However, when overlaying these 1,234 genes to known cancer genes (either 

those frequently mutated or implicated in cancer), the resulting overlap was less than anticipated. 

I queried known cancer genes through two different resources: the Cancer Genome Atlas 

(TCGA) and the Cancer Gene Census (CGC) (Futreal et al., 2004). Of the 127 most frequently 

mutated genes identified by the TCGA, only 45 were targeted by these compounds. 

Additionally, the Sanger Institute (CGC) has catalogued genes that have been causally implicated 

in cancer. Only 152 of the 723 CGC genes were targeted by at least one compound screened in 

CCLs. Both limitations on the number of compounds screened as well as general limitations 

regarding protein òdruggabilityó likely play a role in explaining these proportions. Indeed, of the 
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targeted genes in CGC, close to 60% are classified as oncogenes while 15% were classified 

tumor suppressor genes.  

Figure 2.2 Targets and Clinical stage of compounds in CCL screens.  
The compounds used in this figure are from the 9 CCL screens listed in Table 2.1. Only compounds that 
were able to be annotated with the relevant information are shown in each graph. (A) Bar chart showing the 
clinical stage distribution for the drugs 2029 drugs with annotated information. (B) Bar chart showing the ten 
most commonly targeted molecular feature and the number of unique compounds that target this protein. 
Molecular target data from original database or Broad DRH. (C) Shows the 10 most commonly targeted 
pathways in MSigDBõs Canonical Pathway Gene Set (C2:CP) based on the number of unique compounds 
which target at least one gene target in that pathway. 
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 To further investigate the role these druggable genes played in general cell biology and 

cancer pathways, I utilized the Broad Instituteõs MSigDB database, and, in particular, the 

databaseõs Canonical Pathways gene set to represent general cell biology pathways.  While the 

most commonly targeted canonical biology pathway was unsurprisingly òpathways in cancer,ó 

many other biologically significant pathways are also impacted (Figure 2.2C). Indeed, 2,480 of 

the 2,871 canonical biology pathways are impacted by at least one compound, with a median of 

26 unique drugs impacting a given pathway. Regarding cancer specific pathways, 592 of the 620 

pathways were impacted by at least one compound in the Cancer Modules (C4:CM, (Segal et al., 

2004)) and Oncogenic Signature gene sets (C6). Overall, the coverage of the majority of the 

general biology pathways and cancer relevant pathways along with the proportion of drugs 

approved or in clinical trials suggests that CCL screens have, in general, selected a relevant yet 

broad array of compounds for screening. In these past two sections, I outlined the total 

coverage presented in these 9 datasets. Next, I will discuss the overlap among the screens for 

both the CCLs and the compounds to investigate the similarities among the datasets.  

Cancer Cell Lines Have Considerable Overlap Among the Screening Datasets 

In Figure 2.1, it was shown that together the different screening datasets cover a wide 

variety of cancer types. Figure 2.3 shows the coverage of cancer types for each individual cell 

line screen. Generally, the screens show similar proportion for all the cancer type covered with 

the most prominent deviations occurring the datasets with the fewest cell lines (NCI and FIMM 

screens). NCI-60 and the NCI-ALMANAC screening datasets comprise only 60 cell lines, which 

omit some more common cancer types such as sarcomas or pancreatic cancer cell lines. The 

FIMM dataset has the fewest cancer types available with only 5 cancer types available when 

accounting for the òotheró category.   
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Regarding individual cell lines, the datasets often containing a great deal of overlap 

among them (Figure 2.4A). Some of this is unsurprising given some of the datasets are from the 

same institution. For example, PRISM most highly overlaps with CTRPv2 which are both Broad 

Institute Screens and NCI-Almanac is of course comprised of the current set of 60 CCLs used 

in the NCI-60.  Nevertheless, the overlap is quite high in general as can be seen in the heatmap 

by the coloring of cells below the diagonal. While the overlap between any two studies is 

generally over 50%, only 13 CCLs appear in all the datasets (Table 2.2). It is interesting to note 

that of these 13 CCLs, 12 of them are of Caucasian background. Most of these CCLs are female, 

but this is expected given the cancer types represented. Investigating further at the 252 CCLs 

that appear in at least 3 different institutional screens, male and female cell lines are roughly 

Figure 2.3 Tissue Representation Across CCL Screens 

Cell line tissue type representation in each dataset. Tissue type was determined by bioinformatic and 
manual curation using Cellosaurus, the BioSample database, COSMIC, or annotations provided by the 
datasets themselves. Individual tissue of origin are shown except for grouping hematopoietic and 
lymphoid tumors as well as combining any cancer not represented into the òotheró category.  
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equally represented. However, as noted before and shown in Figure 2.1E, 141 of these CCLs are 

of Caucasian background with 15 E. Asian, 12 African, 2 S. Asian, and 1 Native American.  

Of the 1494 total CCLs across these datasets, 387 are unique to a single study (Figure 

2.4B). This number is potentially skewed since several of these screens come from the same 

institution. When grouping the screens by institution from Table 2.1, 697 of the 1494 cell lines 

are unique to a single institution (Figure 2.4C). For the 387 CCLs unique to a single study, most 

of these come from CTRP as shown in Figure 2.4D, which is no surprise as it is the largest CCL 

screen. However, it is clear though that the overlap between GDSC1 and GDSC2 likely limit the 

number of unique CCLs in these datasets. When grouped by institution, both the Sanger 

(GDSC) or Broad (CTRP and PRSIM) screens have the most unique CCLs (Figure 2.4E). 

  

CellosaurusID CCL Name Cancer Type Age  Gender Ethnicity 

CVCL_0031 MCF7 Breast 69 Female Caucasian 

CVCL_0062 MDAMB231 Breast 51 Female Caucasian 

CVCL_0419 MDAMB468 Breast 51 Female African 

CVCL_0553 T47D Breast 54 Female Caucasian 

CVCL_0004 K562 CML 53 Female Caucasian 

CVCL_1711 SR786 NHL 11 Male Caucasian 

CVCL_0465 NIHOVCAR3 Ovary 60 Female Caucasian 

CVCL_0532 SKOV3 Ovary 64 Female Caucasian 

CVCL_1304 IGROV1 Ovary 47 Female Caucasian 

CVCL_1627 OVCAR4 Ovary 42 Female Caucasian 

CVCL_1628 OVCAR5 Ovary 67 Female Caucasian 

CVCL_1629 OVCAR8 Ovary 64 Female Caucasian 

CVCL_0035 PC3 Prostate 62 Male Caucasian 

Table 2.2 Most Common CCLs across the Screening Datasets 
CCLs were harmonized using the Cellosaurus with additional annotation provided by COSMIC or 

BioSample. The data was then filtered by the number of datasets a given CCL appears in. The CCLs here 

have been screened in all the institutional screening datasets.  
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Figure 2.4. Cell Line Overlap/Frequency Among CCL Screens 

(A) Heatmap of cell line overlap between reviewed studies. The heatmap columns and rows are 

organized from fewest to most CCLs, so anything below the diagonal indicates a true proportional 

overlap. The color values above the diagonal are both a size and overlap comparison. (B-C) Bar plots 

showing the distribution for the number of datasets (B) and number of institutions that any given cell 

line appears in. (D-E) Bar plot showing the number of cell lines that are unique to a single dataset (D) 

or institution (E). 

A) Heatmap of Overlap 
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Compound Overlap Among the CCL Screens 

In total, there are over 50,000 unique screening agents with publicly available data in 

these datasets, most of which can be attributed to NCI-60. NCI-60 has data for close to 49,300 

compounds with almost 49,000 of these agents being unique to the NCI-60 screen. However, it 

should be noted that the majority of these compounds failed to meet NCI-60's screening 

standards by either missing the minimum range requirements, not passing a minimum 

consistency among replicates, or by having results for fewer than 35 cell lines. Taking this into 

consideration, only ~21,000 compounds are both publicly available from the NCI-60 and passed 

their standards. Comparatively, the other CCL screens I reviewed tested a combined total of 

approximately 2,746 agents, of which about 2,029 are unique.  

There is an appreciable amount of overlap among the compounds tested in the drug 

screens as shown in Figure 5A below the diagonal. It should be noted that the data from the 

FIMM and gCSI screens were released specifically to examine the reproducibility of cell line 

screens, with particular relationship to the Broad and Sanger Screens. As can be seen in the 

heatmap, these screens have the highest overlap with the GDSC and CTRP screens. GSK on 

the other hand was an early screen brought on by GlaxoSmithKline and only screened GSK 

molecules, so it is not unexpected that these 19 molecules donõt appear with too much regularity 

in the other screening datasets. PRISM, which being a dataset focused on repositioning, actually 

has a fair amount of overlap with the other screening datasets. All in all, the overlap is not quite 

as high as that of the CCLs, but this is unsurprising given there are more potential molecular 

compounds than CCLs to choose from.  
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A) Heatmap of Compound Overlap 

Figure 2.5 Overlap of Compounds and Frequency Among CCL Screens 

(A) Heatmap of compound overlap between reviewed studies. The datasets (heatmap columns and 

rows) are organized from fewest to most compounds screened, so anything below the diagonal indicates 

a true proportional overlap. The color values above the diagonal are both a size and overlap comparison. 

(B-C) Bar plot showing the distribution of the compounds by the number of times they were screened 

across the datasets. (C) Same as B except the analysis was performed completely omitting NCI-60. (D) 

Number of compounds unique to a given screen, once again with the NCI60 data omitted for 

visualization purposes. (E) Number of unique compounds screened by every institution.  
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However, Figure 5B-C shows that there are a number of compounds that have been 

included in more than one screen. 518 drugs appear in at least 2 screens. However, if the NCI-

60 is removed as an outlier for screening more than 49,000 compounds, then this number drops 

to 386 (Figure 5C). If I take into account the institution by grouping the screens as before, the 

number of drugs that have been screened by different institutions (still ignoring NCI60) is only 

281. Surprisingly, 2 compounds were screened by every single screening dataset here: Lapatinib 

and Paclitaxel. Looking at the screens with the most unique compounds, this is clearly NCI-60 

with over 45,000 unique compounds. For illustrative purposes, the NCI-60 was omitted for 

Figures 5D and it is clear that the PRISM and CTRP datasets have the next highest number of 

unique compounds. The NCI has by far screened the most unique compounds thanks to the 

NCI60 in particular, with the Broad Institute having the next most data on 1,300 unique 

compounds (Figure 5E). This is not to overlook the Sanger screens since the proportion of 

unique compounds in the GDSC screens is still fairly high (193 compounds unique of 443 total 

compounds between GDSC1 and GDSC2). While each of the major CCL screens contain 

unique information, enough overlap exists among the datasets to test the consistency of these 

screens and indeed models of drug response derived from this data (see discussion for section 

on Consistency Among Screens).   

Only a Few Screens Are Appropriate for Model Building  

Of the screens reviewed here, only three have screened a large enough number of CCLs 

for every compound to enable robust model building: GDSC1, GDSC2, and CTRP. These 

screens have a median CCL/drug of 831, 742, and 916 respectively. Each screen has a few 

compounds that have only been screened in a few hundred cell lines, even down to just 44 CCLs 

for one compound in GDSC2. However, the interquartile range for each of these screens are 
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similar: 880-926, 728-752, 700-851 CCLs/compound for GDSC1, GDSC2 and CTRPv2 

respectively. In this way, the number of CCLs screened per compound doesnõt differentiate 

among these or give preference to one for model building.   

The choice of drug concentrations used in CCL studies is important. On one hand, the 

concentration should be relevant for the amount of drug a tumor would see in a patient to 

ensure the dosing is biologically relevant. However, there is an opposing and competing need to 

fit accurate four-parameter dose-response curves, which is often aided by having a larger dose 

range. GDSC in general has a smaller and typically more tailored dose range compared to CTRP. 

For example, the toxic chemotherapeutic paclitaxel has a maximum tested dose of 102.4 nM in 

GDSC but is tested up to 66,000 nM in CTRPv2. While likely more appropriate in this case, I 

looked at potential issues this may cause by comparing the reported EC50 value to the 

maximum tested dose range for each of these datasets (Figure 2.6). GDSC is highly skewed 

toward the right in these graphs indicating that most of the CCLs tested by these compounds 

are not responding at the maximum tested concentration. For example, 106/343 compounds in 

GDSC1 and 61/193 compounds in GDSC2 are screened such that 90% or more of the CCLs 

screened have a reported EC50 value above the maximum tested concentration. In comparison, 

only one drug in CTRPv2 is screened such that a majority (50%) of the CCLs have a reported 

EC50 value higher than the maximum screening concentration.  
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2.4 DISCUSSION 

There are many obvious benefits for having the data from these large CCL compound 

screens publicly available. As reported earlier, this data can be helpful to identify novel drugs for 

the treatment of cancer or a particular indication of cancer as well as biomarkers of response 

and even the biological mechanisms behind growth inhibition. These resources can be used for 

anything from drug discovery, to simply check the effective dose range of a compound for study 

design, to complex drug response modeling and identification of gene-drug regulatory networks.  

The utility of having screening data available for over 50,000 compounds (2,000 if NCI is not 

included) and drug response information on close to 1500 CCLs is obvious and shouldnõt be 

understated. However, the limitations are more nuanced. In this discussion section, I will focus 

on the major limitations of these screens, the consistency of the data among the screens, as well 

as the implications for model building.   

Figure 2.6 Dose Range vs EC50 values comparison among GDSC and CTRP screens 
Data for these plots came from the most current release at the time of writing (April 2021). (A-C) 

Maximum tested dose and EC50 values were obtained for the dataset indicated. For every drug, the 

number of cell lines with a reported EC50 value over the maximum tested dose range was counted and 

then divided by the total number of cell lines screened against giving the proportion of cell lines that 

were resistant to that therapy. The plots show a histogram of that proportional value for all the drugs 

in that dataset. 
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Limitations of Screens 

There are always improvements that can be made to the number and diversity of the 

CCLs used in the CCL screens. In general, the CCLs reviewed covered a diverse array of cancer 

types. Many cancer types though are most often represented by only a few CCLs. While some of 

this is unavoidable in some cases like prostate cancer, this limits the direct study of biological 

specific phenomenon and drug interactions in CCLs (such as studying the AR-V7 splice 

variantõs effect on drug response). The same goes for the ethnicity background of these cell 

lines, which is of increasing importance as more understanding is made on the effect ethnicity 

has on cancer progression and treatment response (Sekine et al., 2008; Keenan et al., 2015; Costa 

and Gradishar, 2017). Having a more varied set of CCL ethnicities would make it possible to 

determine if differences in ethnic background causes phenotypic changes (differences in drug 

response or genomic data) at the cancer cell line level. Even more concerning would be if the 

discoveries found in these CCL screens wouldnõt translate to patients of African, Asian, or other 

underrepresented backgrounds. As cancer biologists, we often think about how well CCLs 

represent patients as a model of cancer, yet we rarely think about cell line sex and ethnic 

background. Still population-specific genetic variation contributes to health disparities in cancer, 

cancer risk, and outcomes and so these factors should be considered more closely in our models. 

Molecularly, increasing the number and diversity of CCLs used would also be highly 

beneficial to the identification of biomarkers relevant to targeted therapies. Targeted therapies 

target particular vulnerabilities in cancer and as such are expected to only work for the subset of 

cell lines with that vulnerability. Indeed, previous reports have suggested that up to 85% of the 

cell lines tested in some screens are insensitive to the majority of tested compounds (Bouhaddou 
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et al., 2016), placing serious limits on the power to identify biomarkers associated with response 

to those treatments. 

Fortunately, new efforts have begun to generate in vitro cancer models which capture this 

diversity (Williams and McDermott, 2017). The Cancer Cell Line Factory at the Broad Institute 

aims to generate more than 10,000 CCLs for research use (Boehm and Golub, 2015). The 

Human Cancer Model Initiative (HCMI) is another effort to increase the number of CCLs 

available. The HCMI is a collaboration between the NCI, Cancer Research UK, the Sanger 

Institute, and the foundation Hubrecht Organoid Technology, which aims to create as many as 

1000 new in vitro cancer models with detailed clinical information, carefully controlled culture 

condition, and modern culture techniques such as conditionally reprogrammed cells and 

organoids (https://ocg.cancer.gov/programs/HCMI). Second, new types of model systems 

have recently become available that may increase the biological relevance and diversity of large 

screening dataset. Patient-derived tumor xenografts (PDX) have also been explored as a means 

of expanding the genetic diversity of pre-clinical drug screens (Gao et al., 2015). Similarly the 

establishment of organoid models and organoids based on PDX (also called PDOs) have been 

shown to model be promising models of in vivo response (Huang et al., 2020). Hopefully, these 

efforts will greatly increase the diversity and clinical relevance of available pre-clinical cancer 

models for future screens. 

Consistency Among Screens 

Concerns regarding the consistency of these CCL screen datasets heightened in 2013 

when a study reported a large degree of inconsistency between the GDSC and Cancer Cell Line 

Encyclopedia (CCLE, which later spun off CTRP dataset). (Haibe-Kains et al., 2013). However, 

the statistical methods and approaches employed in this study were subsequently called into 
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question and multiple follow-up studies that reanalyzed the results concluded that both the 

pharmacological and genomic data are largely consistent and reproducible between these 

datasets (The Cancer Cell Line Encyclopedia Consortium and The Genomics of Drug 

Sensitivity in Cancer Consortium, 2015; Bouhaddou et al., 2016; Geeleher et al., 2016; Haverty et 

al., 2016; Mpindi et al., 2016; Pozdeyev et al., 2016).  

Beyond reanalyzing the data, these follow-up papers also proposed potential reasons for 

any remaining inconsistencies. Aside from technical considerations, there was a consensus that a 

major source of variation was due to the abundance of insensitive cell lines for a majority of 

compounds tested. That is, often when compounds target specific cancer dependencies, their 

pharmacological metrics are dominated by cells insensitive to the compoundõs effects. When 

comparing the IC50 or area under the drug dosage and response curve (AUC) metrics, the few 

sensitive cell lines appear as outliers while the technical variability (noise) can then dominate the 

correlation of these statistics. 

Additionally, problems with consistency are compounded when the datasets use different 

dose ranges or when IC50s are used for comparison. Mpindi et al., for example, investigated the 

effect of dose ranges by harmonizing the data to the same dose range, and found improved 

agreement between the datasets when these differences were accounted for. Several studies 

called into question the utility of the IC50 metric in comparing such large-scale datasets for two 

major reasons (Bouhaddou et al., 2016; Haverty et al., 2016; Pozdeyev et al., 2016). First, it was 

noted that extrapolating the IC50 when it lies beyond the maximum dose tested often leads to 

increased variability, which would further decrease consistency among the studies. Second, 

several studies argued that IC50s do not capture the diversity of pharmacological profiles, and 
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thus reanalyzed the data using variations on the AUC metric, which better combines 

information on the potency (IC/EC50) and efficacy (i.e. maximal activity value or Emax) of the 

drug (Bouhaddou et al., 2016; Haverty et al., 2016; Mpindi et al., 2016; Pozdeyev et al., 2016). 

Both harmonizing the dose range and analyzing the data with AUCs instead of IC50 helped to 

account for some of the variability expected from insensitive cell lines and thus allowed for a 

more accurate assessment of consistency. 

Technical variability exists in all biological experiments, and CCL drug screens are no 

exception. A benefit of having overlap among these screens is that it allows for cross-validation 

when identifying novel drugs or cancer/molecular settings for existing drugs. However, in 

conducting cross-validation, one needs to keep in mind all potential sources of variability and 

take these into consideration when determining if diverging results from one study to another 

represents something truly biological. That said, all in all, the results from CCLE and GDSC 

(along with FIMM and gCSI) have been found to be largely consistent. 

Choice of Screen for Model Building 

To build the types of regression models needed for drug response modeling, both 

transcriptomic and compound efficacy metrics are needed. The only studies that provide 

transcriptomic information have been the NCI, Broad Institute, and Sanger Institute. Strictly 

speaking, transcriptomic information from the Cancer Cell Line EncyclopediañBroadõs attempt 

to categorize CCLs at the genomic, transcriptomic, and methylomic levelñcould be matched 

for any of the studies provided here. However, since it was shown that cell lines donõt have 

complete overlap among the studies and since genomic drift in a cell line is possible between the 

datasets, using matched data is preferred. With this consideration and the need for large 
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amounts CCLs screened per drug, the best datasets for model building are the GDSC and CTRP 

datasets.   

Regarding genomic information between these screens, there are some differences. The 

transcriptomic data from CTRP is RNA-Seq based and housed by the CCLE which does 

update, with the most recent release of the expression data being in 2019. Unfortunately, the 

screening data in CTRPv2 itself hasnõt received many updates since its 2015 release data. For 

GDSC the opposite is true. The expression data is microarray based and was last updated in 

2015 while GDSC compound screening data had its last major update in 2019 with the creation 

of GDSC1 and GDSC2, but has received additional screening data as recently as February 2020 

(News - Cancerrxgene - Genomics of Drug Sensitivity in Cancer, 2021). It is unfortunate that the 

transcriptomic data isnõt collected at exactly the same time the compound efficacy data is, 

though obviously this is wholly impractical for such large datasets. CCLs have been shown to 

drift in labs which can lead to differences in gene expression, cell morphology, and proliferation 

(Ben-David et al., 2018). However, a recent study has also shown that while drift exists across 

datasets, in general there is only a small association between total genetic drift and differences 

between drug response (Quevedo et al., 2020). Since these publications, efforts have been made 

to minimize drift in these large CCL screens and the evidence suggests that the major 

transcriptomic pathways in a CCL arenõt altered by drift.   

For model building, there is no evidence for better performance of models trained with 

microarray compared to RNA-Seq data, though RNA-Seq does have over twice as many 

features compared to the microarray data. This may lead to more relevant features being 
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included for a model but could also exacerbate problems of overfitting if not considered 

properly.  

The largest difference between these two screens may come from the approach used for 

preferred screening concentration and efficacy metric. As seen in Figure 2.5, the screening 

concentration can make a substantial impact on the ability to call sensitive or resistant cell lines.  

Anytime the EC50 is over the maximum concentration, some interpolation of the graph needs 

to be made in order to estimate the EC50 value. This can be done to some accuracy after the 

maximum concentration; however, for many of these drugs, the estimated EC50 value is much 

higher than the maximum screening concentration. Of the 106 GDSC1 and 61 GDSC2 drugs 

with 90% CCL resistance, 75 and 60 of those drugs have an average screening concentration over 

8 times larger than the maximum screening concentration. For many of these EC50 estimates, 

there is likely no way for them to be accurate and as such the values derived from any attempt to 

estimate them is going to be driven simply by noise.  

Having even a majority of CCLs resistant to a particular drug is expected for some 

compounds, especially targeted therapy that may target a vulnerability present in only a few 

CCLs. However, these noisy values are likely detrimental to the modeling process. If the 

variability in 90% of the observations are driven by stochastic noise, the models I build using 

our current framework are simply not going to be biologically meaningful. Additionally, the 

preferred sensitivity metric is different for each dataset. GDSC typically reports EC50 values 

while CTRP reports normalized area under the curve (AUC) values.  AUC values are bound 

between 0 and 1and represent the proportional area under the fitted dose response curve. AUC 

values are likely better in this situation since any value measured above the dose response curve 
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will have a value near or equal to 1. This helps with outliers as well, in the reported EC50 values 

in the CTRP data some of the measured EC50 values are over 10300 times larger than the 

maximum treated concentration. While such outliers typically donõt exist in the GDSC data, 

using AUC values instead helps to ensure that outliers and the fit of a curve are less of an issue. 
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CHAPTER 3: Virtual Screening Breast Cancer Patients and The Identification 

Of AZD-1775 For TNBC 

 

3.1 INTRODUCTION  

In Chapter 1, I outlined the potential drug response modeling has to be used to identify 

potentially effective compounds for specific cancer types of interest. There is evidence that drug 

response models can capture some of the biology of the disease to allow for accurate predictions 

of drug response as well as biomarker identification.  However, it had not yet been determined if 

I could flip the traditional paradigm of patient drug response modeling in order to identify drugs 

targeted towards a particular patient population. That is, instead of stratifying patients into 

responder/non-responder populations, can I begin with the patient population I would like to 

respond and test for compounds predicted to target this patient subset?  

In Chapter 2, I outlined the landscape of drugs and cell line screening datasets that could 

be used for drug response modeling. With this information, it became clear that the data from 

CTRP was larger, provided more detailed RNA-Seq expression data, and had a larger screening 

range (i.e. potentially less noise) than the only comparable dataset, GDSC. CTRP then became 

the obvious choice for model building. The detailed patient information provided from the 

TCGA dataset made this 1,000+ breast cancer patient data suitable for imputing drug sensitivity. 

Even with a prediction accuracy of 75%, that would mean over 750 patients would have their 

drug response predicted accurately enough that trends between patient clinical features and drug 

response should become apparent. With over 1,000 patients and the potential to impute 

response for 496 compounds, this would lead to the potential for the interrogation of over 

496,000 patient drug response scores. Effectively, this allows us to create a virtual screen of 

breast cancer patients and ask questions such as what drugs are predicted to have preferentially 
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activity in a particular breast cancer subtype or what breast cancer mutations are associated with 

this drugõs predicted activity.  

For this study, I aimed to identify compounds that could lead to the more effective 

treatment of TNBC. Using a candidate drug as an example, I demonstrate the process of 

identifying a lead candidate drug and perform biomarker discovery for the drug of interest. 

Then, I validate the method using an independent cell line drug screening dataset and use in vitro 

and in vivo experiments to explore the utility of the candidate drug with existing standard of care 

treatment. These results are presented in two phases: the discovery phase and the validation 

phase. Overall, I contend that drug sensitivity prediction methods can fill in the often-missing 

pharmacological data from clinical patient datasets, providing a virtual drug screen of patients to 

hundreds of compounds and allowing for the identification of trends among imputed drug 

response, clinical features, and patient subtypes. This analysis that makes up this chapter is 

similarly presented in my paper: Facilitating Drug Discovery in Breast Cancer by Virtually Screening 

Patients Using in Vitro Drug Response Modeling (Gruener et al., 2021). 

3.2 MATERIALS AND METHODS 

Data Acquisition and Code Availability 

The Broad Instituteõs Cell Therapeutics Response Portal v2 (CTRP) (Seashore-Ludlow et 

al., 2015) AUC data were obtained from the Cancer Target Discovery and Development 

Network established by the National Cancer Instituteõs Office of Cancer Genomics 

(https://ocg.cancer.gov/programs/ctd2/data-portal, no date). The corresponding gene expression values 

for these cell lines were obtained directly from the Broad Instituteõs Cancer Cell Line 

Encyclopedia (CCLE) data portal (Broad Institute Cancer Cell Line Encyclopedia (CCLE), no date). The 

Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Research Network et al., 2013) gene 
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expression data was downloaded from firebrowse.org and the clinical data (IHC status, PAM50 

subtype, etc.) was downloaded using the TCGAbiolinks R package (Colaprico et al., 2016). The 

Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al., 2013) data was downloaded the 

GDSC website (Drug Download Page - Cancerrxgene - Genomics of Drug Sensitivity in Cancer, no date). 

R Code to reproduce the entire computational analysis is available from the Github 

repository at (https://github.com/RFGruener/Gruener-et-al_2021). There, R scripts and 

additional documentation allows for the download of the CCLE, CTRP, GDSC, and TCGA 

data, CTRP/CCLE model generation and imputation in TCGA, statistical analyses to identify 

compounds of interest, and biomarker analysis. 

Generating Models for Imputing Drug Response and Statistical Analysis 

The methods for imputing drug response in TCGA patients using the CTRP/CCLE cell 

line data are based on those previously described (Geeleher, Cox and Huang, 2014). To 

summarize the methodology here, TCGA and CCLE expression data were filtered for common 

genes between the two dataset and then integrated using ComBat (Johnson, Li and Rabinovic, 

2007). Feature selection was performed by removing 20% of genes with the lowest variation in 

gene expression across the samples. After a power transformation of the AUC values, a linear 

ridge regression model was fit between the CCLE gene expression and corresponding cell line 

AUC values from CTRP for every drug independently. Once the models were fit, I input the 

homogenized TCGA patient gene expression data into the models to obtain a drug sensitivity 

estimate (imputed sensitivity score) for each patient to every drug in CTRP. 

Criteria for Lead Compound Identifcation and Statistical Analysis  

Patients were grouped into clinical or PAM50 subtypes and the imputed sensitivity 

scores for each patient were compared using a two-sided Welch Two Sample t-test. For the 
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proof-of-concept comparisons for drugs effective in the hormone receptor-positive (HR+) 

setting, patients were separated into HR+ and TNBC, and t-tests were performed on the 

respective imputed sensitivity scores. For comparisons looking for drugs effective in the TNBC 

setting, patients were stratified into TNBC and non-TNBC groups and t-tests were performed 

on the respective imputed sensitivity scores. Given the large sample size (n > 1000) for these t-

tests, the number of significant associations and degree of the significance could be quite high 

even after multiple-test corrections. This enabled us to be stricter in our criteria for compound-

of-interest identification. For the HR+ analysis, only the 10% most significant compounds 

predicted to be more effective in the HR+ subset were investigated further. For the TNBC 

analysis, similar criteria were employed, selecting discoveries based on both a top 10% 

significance and a top 10% effect size thresholds. This second criterium was added because the 

effect size values were in general skewed towards TNBC for biologically unspecific reasons, as 

mentioned in the discussion. T-tests, p-value adjustments, and Spearmanõs correlation tests were 

performed using the base functions in R. Data was graphed using the package ggplot2 

(Wickham, 2009). Mechanism of action, target information, and clinical phase were obtained 

from a recent review (Ling et al., 2018).  

Gene-Set Enrichment Analysis  

Gene-set enrichment analysis (Subramanian et al., 2005b) as performed using the software 

package GSEA v4.0.2 for Windows downloaded from gsea-msigdb.org. TCGA BRCA RNA-

Seq data was used as the expression dataset, MSigDBõs hallmark gene sets (Liberzon et al., 2015) 

were used for the gene sets database, and patient imputed sensitivity scores to AZD-1775 were 

used as a continuous phenotype label. Default software parameters were used except Pearson 

correlations were used for ranking genes to reflect the use of a continuous phenotype label.  
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Obtaining Biomarker Associations Between Imputed Drug Response and Nonsynonymous 

Somatic Mutations and GDSC ANOVA Biomarker Associations 

The associations between imputed drug response in TCGA and somatic mutations were 

calculated using linear models in R as previously described (Geeleher et al., 2017). Briefly, gene 

mutation information was obtained from firebrowse.org (2016/01/28 release), which were 

summarized at a gene level with mutations called if a gene contained a nucleotide change that 

would affect the proteinõs amino acid sequence. I controlled for cancer type when the analysis 

was applied to all TCGA or PAM50 subtype for the TCGA BRCA cohort when specified in the 

text by including cancer type/subtype as a covariate (encoded as a factor) in the linear models.  

ANOVA associations between drug response and TP53 for all 185 drugs in the GDSC2 

dataset was downloaded directly from the GDSC data portal (Cancer feature: TP53_mut - 

Cancerrxgene - Genomics of Drug Sensitivity in Cancer, no date). The p-values were FDR corrected for 

the 185 associations tested.  

In Vitro Cell Line Experiments  

BT549, HS578T, and MDA-MB-231 cell lines (ATCC) were maintained in RPMI 

(ThermoFisher Scientific, Waltham, USA), DMEM, and DMEM (GE Healthcare Life Sciences, 

Hyclone, Logan, USA) media respectively. All media was supplemented with L-glutamine and 

10% FBS (ThermoFisher Scientific, Gibco, Waltham, USA). For viability assay, cells were 

seeded at 5000 cells/well in 96-well plates. After 24 hours, the media was removed and replaced 

with media containing AZD-1775 at various concentrations between 0 and 3.2 µM, DMSO was 

used as vehicle and given in control wells. Growth was monitored every 4 hours to ensure 

control wells reached but did not exceed 95% confluence. After approximately 72 hours of 

treatment for each cell line, Cell Titer Glo® (Promega, Madison, USA) viability assay was 

performed as suggested by manufacturer. Luminescence values were obtained from VICTOR 
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Multilabel plate reader (PerkinElmer, Waltham, USA) and normalized to control well before 

plotting. Graphing and IC50 determinations were done using Prism 8 software (GraphPad, San 

Diego, USA). 

Xenograft Experiments  

All mouse studies were performed under the approved Institutional Animal Care & Use 

Committee (IACUC) protocol number 72037. C.B17 SCID mice were purchased from Taconic 

Biosciences. At 8 weeks of age, 3 × 106 MDA-MB-231 cells in PBS and MatrigelTM (Corning, 

Corning, USA) were injected into the mammary fat pads of the mice. When average tumor size 

reached 150 mm3, mice were randomized into 4 treatment groups including vehicle and 

combination. AZD-1775 was received from AstraZeneca through the NIHõs CTEP program, 

prepared in 0.5% methylcellulose solution, and delivered via oral gavage at 75 mg/kg on the first 

three days of the week for 4 consecutive weeks. Doses and schedule of AZD-1775 were 

suggested by AstraZeneca in order to best mirror use in patients. Paclitaxel from Teva 

Pharmaceutical (NDC 1703-4768-01) was purchased from the University of Chicago Pharmacy, 

prepared in PBS, and delivered by IP injection at 12 mg/kg on the first day of the week for 4 

consecutive weeks. Tumor volume was monitored twice weekly by caliper and measured using 

the formula Ǯ/6 x L x W2. Survival analyses are based on when tumors reached a study endpoint 

of 2000 mm3. Graphing and statistical analyses performed using Prism 8 software (GraphPad, 

San Diego, USA). 
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3.3 RESULTS 

Discovery Phase: Imputing Patient Response to Medications Enables the Discovery of 

Candidate Drugs for TNBC. 

CTRP is the largest publicly available cancer cell line screening dataset with 496 unique 

compounds screened in 887 cancer cell lines. I used CTRPõs publicly available in vitro drug 

response data and the corresponding RNA-Seq gene expression data from CCLE (Barretina et al., 

2012)  for model building as described in the methods. Because each model is generated 

independently, the accuracy of these models can vary. Therefore, I performed a 20-fold cross-

validation, and, of the original 496, only the 427 drug response models that had both a 

significant and positive Spearman correlation between measured and predicted response were 

further examined for the rest of this paper (Figure 3.1). I then applied these drug response 

models to the breast tumor RNA-Seq data from TCGA (Cancer Genome Atlas Network, 2012) 

to obtain a drug sensitivity estimate for each drug against each patient. The complete file of 

imputed drug response is available on the github repository or as supplementary table 1 of my 

associated publication (Gruener et al, 2021).  

Figure 3.1 Distribution of Cross-Validation Results 
The spearman rank correlation coefficient was determined for each of the 496 drug-response models based 

on a 20-Fold cross validation. A histogram of the correlation coefficients is shown. The red line indicates the 

model with the minimum spearman correlation that maintained significance. Roughly, every model to the 

right of this line was included in further analysis.  
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In order to discover drugs that are targeted towards TNBC, patients were stratified based 

on tumor IHC status for ER, PR and HER2 and patterns of imputed drug sensitivity in each 

subtype were compared. As a proof-of-concept, I first sought out drugs that were predicted to 

be targeted towards hormone receptor-positive (HR+, i.e., ER+ and/or PR+) breast cancers. By 

stratifying patients by their HR-positivity and comparing patient imputed drug sensitivities, I 

identified 11 compounds predicted to be preferentially effective in HR+ cancers (Figure 3.2). 

The two most significant results were a BCL2 inhibitor and tamoxifen, the standard-of-care ER 

antagonist. BCL-2 is overexpressed in 80% of ER+ cancers and inhibitors have already been 

investigated for HR+ cancers in clinical trials (Lok et al., 2019). These results were encouraging 

and suggested that this approach could indeed identify relevant compounds-of-interest for a 

patient population. 

I employed the same approach to identify compounds effective for TNBC patients. I 

dichotomized patients into TNBC and receptor positive (ER+, PR+, or HER2+; abbreviated 

RPBC) categories and looked for compounds that showed greater predicted efficacy in TNBC 

Figure 3.2. Proof of Concept: Drugs associated with ER+ Breast Cancers 
Drug response models were built for 427 CTRP drugs and drug response predictions were made for every 

TCGA breast cancer patient. A. Patients were stratified into HR+ and HR- groups and t-tests were 

performed for every drug between the respective imputed drug response values. The results for all the drugs 

predicted more effective in the HR+ setting are plotted in the strip chart by the FDR adjusted p-value. B-C. 

Boxplots of tamoxifen imputed drug response with patients subtyped by either their IHC molecular status (B) 

or PAM50 subtyping (C).   
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compared to RPBCs by t-test. Figure 3.3A shows a volcano plot of the t-test results for all 427 

drugs investigated. Due to the large sample size (ntotal = 1095), 251 drugs showed higher 

sensitivity in TNBC when compared to RPBC at a Bonferroni adjusted p-value of less than 0.01 

(see discussion). Thus, I chose to enforce a stricter threshold and focused on the top 10% of 

compounds showing higher predicted efficacy in TNBC based on both effect size and statistical 

significance, the results of which can be seen in Table 3.1. Of note, the most frequently 

represented pathway targeted by these compounds was cell cycle related (12 out of 17 drugs of 

interests; mechanism of action starred in Table 3.1). This agrees with previous studies that have 

identified the cell cycle as a vulnerability in TNBC (Hwang, Park and Kwon, 2019). Furthermore, 

all ten pathways identified by this analysis have been implicated as dysregulated in TNBC. 

Several of the candidate compound nominated by our approach have already been investigated 

in preclinical or clinical settings. References to the preclinical and clinical investigation of these 

compounds in TNBC can be found in Table 2. Overall, our approach appears consonant with 

and in support of the more traditional approaches that led to the identification of these drugs 

for TNBC in the literature; thus, substantiating the accuracy of our results and the potential of 

our computational approach to help speed up the drug selection pipeline.  
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Figure 3.3 AZD-1775 is predicted to be most effective in TCGA triple-negative breast cancer 
(TNBC) patients. 
(A) Volcano plot of TNBC vs. receptor positive breast cancer (RPBC, i.e., non-TNBC) imputed sensitivity t-

test results for all drugs in CTRP. 427 drug response models were applied to the TCGA breast cancer RNA-

Seq data resulting in an imputed sensitivity score for each patient. A t-test was then performed for every 

compound between the compoundõs imputed response in TNBC and non-TNBC (RPBC) patients. The p-

values were Bonferroni-adjusted to correct for multiple testing. Highlighted in red are the top 3 most 

significant results (AZD7762, leptomycin B, and AZD-1775). (B,C) AZD-1775 imputed sensitivity in TCGA 

breast cancer tumors by receptor status (B) and PAM50 subtyping (C). Boxplots summarize results of each 

tumor sampleõs imputed sensitivity score to AZD-1775 in the TCGA breast cancer cohort by subtype. The n 

values indicate the number of patients in each group and p-values shown are adjusted for multiple testing. 

Lower values on the y-axis indicate increased predicted sensitivity. Dataset Abbr: TCGA, The Cancer 

Genome Atlas; CTRP, Cell Therapeutics Response Portal. 
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Table 3.1 Drug pathways predicted to be effective for TNBC based on the differential imputed 
response analysis.  
Table 3.1 contains the mechanisms of action (MOA) of the compounds that were in the top 10% most 

effective for TNBC based on both effect size and p-value from the imputed sensitivity analysis in the 

TCGA breast cancers (see also Figure 3.3). The rows are in ordered from most to least significant based 

on t-test p-value of the first drug listed in the drug column. A count column for the total number of drugs 

with the same MOA are also included. Asterisk (*) in Mechanism of Action column indicate drugs that 

target cell cycle/DNA repair pathways. 

Mechanism of Action 
# of Drugs 
in Top 10% 

Total # of 
Drugs in 
Database 

Drug(s) in Top 10% 

CHK inhibitor * 1 1 AZD7762 

exportin antagonist 1 1 leptomycin B 

WEE1 kinase inhibitor * 1 1 AZD-1775 

CDK inhibitor * 5 6 
dinaciclib, alvocidib, SNS-032, PHA-793887, 

BRD-K30748066 

translation (eIF4F complex) 
inhibitor 

2 2 CR-1-31B, SR-II -138A 

PLK inhibitor * 3 4 GSK461364, BI-2536, rigosertib 

proteasome inhibitor 1 2 MLN2238 

tubulin polymerization inhibitor 
* 

1 4 docetaxel  

phosphodiesterase inhibitor 1 2 ML030 

kinesin-like spindle protein 
inhibitor * 

1 1 SB-743921 
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Of the most significant hits, the top two compoundsñAZD7762 and leptomycin Bñ

have been studied in clinical trials in cancer. However, the development of these two 

compounds was halted due to toxicities. Leptomycin B is an XPO1 inhibition and new 

inhibitors of XPO1 have been generated in recent years. In Chapter 4, I examine the use of 

XPO1 inhibitors in the context of breast cancer further. For now, the third most-significant hit, 

AZD-1775 (aka MK-1775 and Advosertib), was well tolerated in patients in a phase I clinical 

Table 3.2. Literature support for drugs identified by imputed drug response modeling 
Table 3.2 contains references for the same drugs as Table 3.1. The references are grouped by investigation 

of the MOA to which the compound belongs with additional references for that specific compound in 

either preclinical or clinical setting.  References are given as PubMed IDs for the MOA (Mechanism of 

Action) and preclinical columns, whereas clinical trials are given by their the clinicaltrials.gov identifier 

numbers (NCT). The furthest clinical phase the compound has been tested in is also given in the indicated 

column. 

 

Drug 
MOA Investigated in TNBC 
(Pubmed ID) 

Clinical 
Phase  

Preclinical TNBC 
Evidence for Drug's Use 
in TNBC (Pubmed ID) 

Clinical Trial of 
Drug in TNBC 

AZD7762 
Reviewed in 30825473; 
25104095, 22446188  Phase 1 25104095  

leptomycin B 
24431073, 28810913, 
30996012 Phase 1   

AZD-1775 

Reviewed in 30825473; 
29088738, 30181387, 
29605721   Phase 2 

29088738, 30181387, 
29605721   NCT03012477 

Dinaciclib Reviewed in 28108739; 
29144137, 27486754, 
31704972, 29137393, 
28678584, 25485498   

Phase 3 27486754 
NCT01676753, 
NCT01624441 

alvocidib Phase 2   
SNS-032 Phase 1 31704972  
PHA-793887 Phase 1   

BRD-K30748066 NA   

CR-1-31B 18644990, 19628077, 
31106142 

NA   

SR-II-138A NA   

GSK461364 

Reviewed in 30825473; 
31751384, 30996295 

Phase 1 31751384  

BI-2536 Phase 2 30996295  

rigosertib Phase 3   

MLN2238 
30400780, 23948298, 
30601533, 25575864   Launched  NCT02993094 

docetaxel 
Reviewed in 26273192; 
27966988 Launched 27966988 

Many (e.g. 
NCT02413320) 

ML030 27901486, 23536305  NA   

SB-743921 
20068098, 29190901, 
29535384, 24928852  Phase 2 29190901  
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trial in advanced solid tumors (Leijen, van Geel, Pavlick, et al., 2016). AZD-1775 also had a high 

in vitro cross-validation score (rs: 0.55, p-value 3.3 × 10Ĭ60) and targets the cell cycle like many of 

the other most significant results. Finally, AZD-1775 was also consistently one of the most 

significant results based on both clinical subtypes based on receptor status (Figure 3.3B) and 

PAM50 subtype classifications (Figure 3.3C). For these reasons, I chose to focus on AZD-1775 

for subsequent validation and to demonstrate the potential/feasibility of our drug 

selection/validation pipeline.  

Discovery Phase: Identify Biomarkers for AZD-1775 

Proof-of-concept: Tumors Predicted to be Sensitive to AZD1775 are Enriched with Cell Cycle 

Gene Sets 

The primary target of AZD-1775 is the Wee1 kinase, which is known to play a critical 

role in inhibiting the cell cycle at the G2/M checkpoint. I hypothesized that, if our model is 

picking up on biological meaningful patterns, the RNA expression profiles of patient tumors 

predicted to be more sensitive to the AZD-1775 should be enriched for cell cycle gene sets. To 

test this hypothesis, I performed gene-set enrichment analysis (GSEA) on the TCGA breast 

cancer RNA-seq data using patient imputed response to AZD-1775 as the continuous 

phenotype label. Using the hallmark gene set, I found that tumors predicted to be more sensitive 

to AZD-1775 were enriched for the G2/M checkpoint signature (Figure 3.4A, FDR = 0.04). 

G2/M is the only significantly enriched pathway that associated with AZD-1775 sensitivity at an 

FDR of less than 0.05, indicating a specific and significant concordance between the imputed 

results and the biological action of AZD-1775.  
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Imputation-Based Drug-Wide Association Analysis Reveals Potential Biomarkers for AZD-1775  

I previously published a method to form associations between imputed drug responses 

and genomic features in a manner analogous to genome-wide association studies (GWAS) 

(Geeleher et al., 2017). I employed this methodology (termed IDWAS for imputed-drug wide 

association study) to link genomic features with our imputed drug response to search for 

potential biomarkers of response to AZD-1775. Results from this analysis identified mutation 

status of 13 genes in the TCGA breast cancer cohort that significantly associated with AZD-

1775 sensitivity at an FDR < 0.05. In particular, AZD-1775 response formed a highly significant 

B A 

Figure 3.4 Biologically meaningful associations with AZD-1775 imputed sensitivity in TCGA breast 
cancers. 
(A) Gene set enrichment analysis was performed in MSigDBõs òHallmarkó gene sets using TCGAõs breast 

cancer expression data with AZD-1775 imputed sensitivity score as the continuous phenotype variable for 

enrichment. The G2M gene set was significantly up-regulated in breast cancer patients predicted to be 

sensitive to AZD-1775 with an enrichment score of -0.695, normalized enrichment score of Ĭ1.86 and an 

FDR q-value of 0.04. A negative enrichment score associates with sensitivity to the drug as smaller imputed 

sensitivity values indicate more sensitive. This was the most significantly enriched for pathway. (B) A 

histogram of p-values achieved for all the associations between AZD-1775 imputed response and any gene 

with a somatic protein-coding change in at least 20 samples (n = 882 genes) in TCGA breast cancer cohort. 

TP53 mutation and AZD-1775 achieves the strongest association at an FDR = 1.2 x 10-46, with the next 

most significant association at an FDR of 1.2 × 10Ĭ13. 










































































































































