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\If debugging is the process of removing software bugs, then programming must be the

process of putting them in." — Edsger W. Dijkstra
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ABSTRACT

Multi-threaded software and distributed cloud software are prevalent as a dominant backbone

for modern applications. Although it is extremely important, their reliability is severely

threatened by software bugs. Among all types of software bugs, timing bugs are among the

most troublesome due to their inherent non-deterministic nature and the huge interleaving

space. Timing bugs are caused by unexpected timing among local events in multi-threaded

systems (local concurrent bugs or LCbugs) or distributed events, such as message or faults,

in distributed systems (distributed concurrency bugs or DCbugs).

A timing bug model is critical to guide the design of automated tackling tools, which

includes three parts: concurrent source, synchronization mechanisms, and sharing resources.

Existing timing bug models mainly focus on the thread interleaving concurrent source, the

lock-related synchronization mechanism, and shared global memory resources for LCbugs.

To fight timing bugs and improve the concurrent software reliability in multi-threaded

systems and distributed systems, this dissertation works on these three parts and makes the

following contributions:

First, this dissertation conducts an empirical study of timing bugs in multi-threaded

systems and distributed cloud service systems to understand how common are timing bugs,

what’s the resource being competed, and how were they resolved or fixed. Our empirical

study includes two parts. (1) we conduct a comprehensive characteristic study on real-world

incidents in Microsoft Azure production-run cloud services. The study reveals several main

findings: (a) about 15% software bug incidents in our study set are caused by timing bugs;

(b) 60% timing bugs in our study set are DCbugs (message timing bugs or fault timing bugs);

(c) half of the timing bugs in our study set are racing on persistent data instead of shared

global memory variables; (d) mitigation strategy, especially running-environment mitigation,

is widely used to resolve timing bug incidents in the cloud. (2) we conduct an empirical study

of manual patches for real-world LCbugs in multi-threaded systems to understand the gap

xii



between automatically generated patches and manually generated patches. The study finds

that (a) lock is the dominant synchronization primitive for enforcing atomicity; lock-related

signals/waits are not the dominant primitive for enforcing pairwise ordering in patches. (b)

leveraging existing synchronization in software is as common as adding extra primitives.

These findings provide many motivation and guidelines for the design of timing bug tackling

tools in this field.

Second, guided by the empirical study, this thesis proposesnew models and detection

tools for message timing bugs and fault timing bugs in distributed systems. Our new model

captures two new concurrent sources (message interleavings and random faults), the new syn-

chronization mechanisms introduced by them, and new sharing resources, persistent data.

Guided by the proposed model, detection tools are designed to predict message timing bugs

and fault timing bugs from correct runs. Each step of our detection tool is carefully cus-

tomized to address the unique challenges for DCbugs in distributed systems. The evaluation

result shows that our tool can effectively and efficiently detect message timing bugs and fault

timing bugs with low false positive rates.

Third, motivated by the findings of LCbug fixing strategies, we design a fixing tool

to model and enforce timing relationship by leveraging existing non-lock synchronization

primitives. Evaluation using real-world bugs shows that our tool can automatically generate

patches that have matching quality with manual patches and are much simpler than those

generated by the previous state of the art techniques.

xiii



CHAPTER 1

INTRODUCTION

In the multi-core era, timing bugs or concurrency bugs 1 widely exist and severely hurt

software reliability in multi-threaded systems. Their unique non-deterministic nature makes

them very difficult to tackle. Although great progress has been made in automated concur-

rency bug fixing techniques recently, patches generated by existing tools are mostly different

from patches designed by developers. In the cloud computing era, the timing bug problem

is getting even worse. New types of non-determinism, inter-node message/event interleav-

ings and random faults, are introduced in distributed systems, which go beyond traditional

intra-node thread interleavings.

Facing the challenge of timing bugs in multi-threaded systems and distributed systems,

this dissertation conducts an empirical study of timing bugs in these systems, proposes novel

timing bug models, and designs fixing and detecting tools guided by the model we proposed.

1.1 Motivation

1.1.1 Timing Bugs

Software systems play a critical role in modern society, but their reliability is severely threat-

ened by software bugs, flaws in a program that cause the program to produce incorrect or

unexpected results. Recent reports show that software failures impact half of the world’s

population (3.7 billion people) and cause USD 1.7 trillion in financial losses in 2017 [13].

Among all types of software bugs, timing bugs are one of the most troublesome. Timing

bugs are non-deterministic bugs triggered by unexpected timing among events in software

systems. An event can be a local computation, message arrival/sending, fault (e.g., node

crashes, message drops, timeouts), and reboot. Local concurrency bugs (LCbugs) are timing

1. In this dissertation, the terms timing bug and concurrency bug are used interchangeably.

1



Thread-1
if(fifo->mut){

fifo->mut->unlock();

}

Thread-2

fifo->mut = NULL;

Bug	triggering	order

Correct	execution	order

Figure 1.1: A LCbug example simplified from a real bug in PBZIP2.

Client	AM	NM	

Submit	T	

(1)	Assign	Task
	T	

(2)	Get	Task	T		(repeated)	

(3)	Cancel	T	(4)	Hang	

Figure 1.2: A DCbug example in Hadoop MapReduce.

bugs caused by local computation events in single-machine multi-threaded systems; dis-

tributed concurrency bugs (DCbugs) are timing bugs caused by distributed events (message,

fault, and reboot) in cloud-scale distributed systems.

Figure 1.1 shows a LCbug example simplified from a real bug in PBZIP2. There are two

concurrent threads, Thread-1 and Thread-2, and a shared variable fifo->mut. The code is

being carefully designed here that Thread-1 first checks the shared variable fifo->mut in

a if statements and access this shared variable only if it is not NULL. If we consider these

two threads separately, this piece of code looks correct. However, developers easily forget

that other threads (Thread-2 in this example) could concurrently access the shared variable

fifo->mut. This unexpected timing order of local computation events eventually triggers

the bug. In this example, when Thread-2 nullifies fifo->mut in the middle, the program

crashes due to a null pointer dereference in Thread-1.

Figure 1.2 illustrates a real-world DCbug example from Hadoop MapReduce. There are

three nodes, Node-Manager (NM), Application-Manager (AM), and the client. The program
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is also being carefully designed that after AM assigns a task T to a container in NM (#1),

this NM container tries to retrieve the content of task T from AM (#2) and retries this

retrieval request until it gets a valid return from AM. Meanwhile, the client can cancel a

task T (#3) after the submitting. If we consider the client and NM separately, each piece

of code looks logically correct. However, developers easily forget that the cancel message

(#3) can arrive AM before the retrieval request from the NM container (#2). If these two

messages are ordered in this timing, when the retrieval request is delivered to AM, task T has

already been canceled upon the client’s request (#3). Not anticipating this timing scenario,

the NM container hangs (#4), waiting forever for AM to return task T.

1.1.2 LCbugs and DCbugs are Di�cult to Tackle

As it is shown in Figure 1.1 and Figure 1.2, writing correct concurrent programs is not easy.

To leverage more than one processing core in local multi-threaded systems or more than

one node in distributed cloud systems, software needs to have multiple components (e.g.,

computation tasks, messages) that can be executed on different cores or nodes concurrently.

This inevitable trend introduces three challenges while developers write concurrent programs

or tackle timing bugs in these systems.

First, most developers think and program sequentially, instead of concurrently. They are

used to thinking about one component or one event at a time, such as Thread-1 in Figure

1.1 and the NM container in Figure 1.2. This sequential thinking habit can easily make

mistakes when multiple components or events in a program execute concurrently.

Second, the interleaving space of timing bugs introduced by this trend is huge. With

more concurrency mechanisms provided by the underlying system, the size of a program’s

interleaving space is exponentially growing with the execution length of the program. For

example, these three statements in Figure 1.1 have three possible interleavings overall (only

one interleaving is the buggy order). If there are four statements, the number of possible
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Figure 1.3: A general flow to tackle software bugs.

interleavings is six. A similar exponential growth can be seen in DCbugs.

Finally, the manifestation of a timing bug is non-deterministic. The execution result of

concurrent or distributed programs depends not only on the input but also the interleaving.

Even if a timing bug manifests once, it is very likely that this bug would disappear in the

next run with the same input. The timing bug in Figure 1.1 and Figure 1.2 may or may not

manifest depending on which interleaving it takes (the solid arrows or the dotted arrows in

the figure). This non-determinism property makes timing bugs challenging to manifest and

debug in software systems.

1.2 Approaches to Tackle Timing Bugs

1.2.1 Modeling is important

A software bug is a flaw in a computer program that causes the program to produce incorrect

or unexpected results. Figure 1.3 shows a general flow to tackle software bugs. Empirical

studies have always been crucial in motivating and guiding the fight against software bugs

4



to improve software reliability. Following new directions or findings pinpointed by empirical

studies, modeling software bugs provides a general and concrete pattern to accurately define

and formalize software bugs. These models and patterns could be further adopted into

software bug detection, software bug fixing, program language design and so on. Finally,

this process can repeatedly iterate to evolve software systems and achieve high reliability.

Overall, modeling is an important step to tackle software bugs.

1.2.2 State-of-the-art in Timing Bug Modeling, Detecting and Fixing

A model of timing bugs generally includes three parts: concurrent source, synchronization

mechanisms, and sharing resources.

Concurrent source defines the underlying concurrency mechanism. For example, the con-

current source in Figure 1.1 is thread interleavings, but in Figure 1.2, the concurrent source

is message interleavings. Synchronization mechanisms capture the timing relationship en-

forcing mechanisms among operations, such as pthread mutex lock primitive in the pthread

library or the partial order introduced by causality relationship. Sharing resources define

resources on which timing bugs could be competing. For example, the previous LCbug and

DCbug examples are racing on shared global memory variables.

Existing empirical study Empirical study is crucial in motivating and guiding the

improvement of software availability. Thorough studies have been conducted for LCbugs

and DCbugs [64, 26, 51] with many follow-up work to date. Previous studies review bugs

mainly in open-source bug databases. Although useful, these studies have not and cannot,

due to the limitation of their data sources, provide in-depth understanding about production-

run cloud service incidents, answering fundamental questions like: what are timing bugs in

the cloud escaped in-house testing and how were they resolved. Answers to these questions

would be crucial to improving the availability of distributed cloud systems.

Traditional LCbug detection approaches Many concurrency bug detection tools
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have been proposed to predict LCbugs in different bug patterns: data race, atomicity vio-

lation, order violation, and effect-oriented detection. Although amazing results have been

achieved, these works are all about shared global memory accessing issues caused by thread

interleavings. These tools cannot adopt to DCbug detection as their model cannot capture

new concurrent sources, such as message interleavings and random faults, and new syn-

chronization mechanisms introduced by distributed systems. Effective techniques to detect

DCbugs are desired.

Traditional LCbug �xing approaches Many automated fixing techniques dedicated

to LCbugs have been proposed to automatically generate patches leveraging a unique prop-

erty of LCbugs— since concurrency bugs manifest non-deterministically, the correct compu-

tation semantics already exists in software. These tools work not by changing computation

semantics, but by adding synchronization operations , including locks and condition vari-

able signals/waits, into software. However, patches generated by existing tools are mostly

different from patches manually designed by developers. Leveraging existing non-lock syn-

chronization to enforce timing relationship is a common fix strategy in manual patches. How

to generate patches as simple and well-performing as manual patches is still a challenging

research problem.

1.3 Contributions

This dissertation works on three components to address the timing bug problem: under-

standing real-world timing bugs in production-run cloud service systems and multi-threaded

systems through empirical studies, modeling and detecting timing bugs in distributed sys-

tems (DCbugs), modeling and fixing timing bugs in multi-threaded systems (LCbugs). The

contribution of these three components interacts and complements each other to extend

timing bug models from different aspects. Specifically, in the concurrent source aspect,

our work extends the model to capture message/events interleavings and random faults;
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in the synchronization mechanism aspect, we extend the model to cover non-lock thread-,

message/events-related synchronization and fault handling. In the sharing resource aspect,

this dissertation extends the model to include persistent data.

(1) Understanding timing bugs in multi-threaded systems and production-run

cloud service systems To answer questions how common are timing bugs, what's the

resource being competed, and how were they resolved or �xed, this dissertation conduct an

empirical study of timing bugs in multi-threaded systems and production-run cloud service

systems. Our empirical study includes two parts.

(a) Timing bugs in production-run cloud service systems Cloud service incidents

caused by timing bugs adversely a�ect the expected service operations, and they are ex-

tremely costly in terms of user impacts and engineering e�orts required to resolve them.

Unfortunately, there is limited understanding about timing bugs in cloud services that ac-

tually happen during production runs. We conducts an empirical study on a large number

real-world incidents in Microsoft Azure services to provide an in-depth understanding and

answer four fundamental questions: how common are timing bugs, how common are message

timing bugs and fault timing bugs, what is the sharing resource being competed, and how

were they resolved in the cloud. Our study �nds that: (i) about 15% software-bug incidents

in our study set are caused by timing bugs; (ii) 60% timing bugs are message timing bugs

or fault timing bugs; (iii) half of timing bugs in our study are racing on persistent data

instead of shared global memory variables; (iv) mitigation, especially running-environment

mitigation, is a widely used strategy to resolve timing-bug incidents in the cloud.

(b) Understand LCbug manual patches in multi-threaded systems Although

indispensable, timing bug �xing is time-consuming and error-prone. Patches automatically

generated by existing �xing techniques mostly insert locks and lock-related synchroniza-

tion primitives into software. However, there is a big gap between automatically generated

patches and manually generated patches; less than one third of real-world local concurrency
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bugs are manually �xed through adding or changing lock primitives. Facing this gap, we

conduct a characteristic study of manual patches for real-world local concurrency bugs. This

study of manual patches for real-world LCbugs reveals many interesting �ndings: (i) lock

is the dominant synchronization primitive for enforcing atomicity; lock-related signals/waits

are not the dominant primitive for enforcing pairwise ordering in patches. (ii) leveraging

existing synchronization, such as thread creation, in software is as common as adding extra

new primitives.

(2) Modeling and detecting timing bugs in distributed systems Di�erent from

previous work on LCbug detection, DCbugs in distributed systems have their unique non-

determinism mechanisms, causality relationships, and synchronization properties. Without

a precise DCbug model, detection techniques cannot predict them e�ectively and e�ciently.

Guided by the empirical study, this dissertation focuses on message timing bugs and fault

timing bugs, two of the most common types of DCbugs. For each type of DCbugs, a new

model is proposed to capture their unique property and a detection tool guided by the

proposed model is designed as follows.

(a) DCatch: a message timing bug model and detection technique Message

timing bugs are caused by untimely message arrivals in distributed systems. The biggest

challenge in detecting them is the more complicated timing relationship in distributed sys-

tems than LCbugs in multi-threaded systems. To address this challenge, DCatch �rst pro-

poses a new model to capture a wide variety of causality and synchronization mechanisms

in real-world distributed systems. Guided by this new model, we build the DCatch tool

to detect message timing bugs by monitoring correct executions with four steps: tracing,

trace analysis, static pruning, and triggering. Each step is carefully customized to address

unique challenges for DCbugs. The evaluation on four representative open-source distributed

systems shows that DCatch can detect message timing bugs e�ectively and e�cently.

(b) FCatch: a fault timing bug model and detection technique Fault timing bugs
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are caused by untimely faults in distributed systems. The biggest challenge is that previous

work relies on manual speci�cation or domain knowledge to hit fault timing bugs, which is

daunting and ine�cient. To address this challenge, we treat fault timing bugs as a type of

timing bugs rather than semantic bugs. We �rst build a new model that regards faults as

a type of non-determinism and captures new causality relationship introduced by hardware

faults. Following this new model, we design the FCatch tool to detect fault timing bugs in

four steps: tracing, identifying con
icting operations, identifying fault-intolerant operations,

and triggering. The evaluation on six common workloads in four widely used open-source

distributed systems shows that FCatch is e�ective to �nd severe fault timing bugs with low

false-positive rates by only observing correct execution.

(3) Modeling and �xing timing bugs in multi-threaded systems with high-quality

patches Guided by the empirical study of manual patches, this dissertation designs a �xing

tool, HFix, to automatically generate high-quality patches for LCbugs. The �rst, HFixjoin ,

enforces ordering relationship by adding thread-join primitives, instead of signals/waits. The

second, HFixmove, enforces ordering and atomicity relationship by leveraging synchronization

primitives that already exist in software. The evaluation on real-world LCbugs shows that

it can automatically generate patches that have matching quality with manual patches and

are much simpler than those generated by previous state of the art technique.

1.4 Dissertation Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces previous work on

local concurrency bug detection and �xing, distributed concurrency bug study, and other

related topics. Chapter 3 discusses our empirical study of timing bugs in multi-threaded

systems and production-run cloud service systems. Chapter 4 and 5 present our DCbug

models and detection tools, DCatch and FCatch, for message timing bugs and fault timing
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bugs. Chapter 6 presents our automated �xing fool, HFix, for local concurrency bugs.

Chapter 7 concludes this thesis and discusses future research work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter presents the background and the related work of this dissertation focusing on

the timing bug research literature. Chapter 2.1 discusses existing approaches on detecting

local concurrency bugs. Chapter 2.2 discusses distributed concurrency bugs and distributed

system model checkers. These approaches are closely related to this dissertation's Chapter

4 and 5. Chapter 2.3 discusses previous work on local concurrency bug automated �xing,

which is relevant to this dissertation's Chapter 6. Chapter 2.4 discusses the related work of

this dissertation's Chapter 3 on empirical studies of timing bugs.

2.1 LCbug Detection

Many techniques have been proposed to detect LCbugs, con
icting accesses on shared global

memory caused by thread interleavings. They can be categorized into three categories based

on the di�erent types of bug patterns in they detection: data race detection, atomicity

violation and order violation detection, and e�ect-oriented detection.

2.1.1 Data Race Detection

Data race is a common type of concurrency bugs. A data race occurs when two memory

accesses from di�erent threads access the same shared data without being properly synchro-

nized and at least one access is a write operation [14].

Three major types of detection techniques have been proposed: lock-set [82] based de-

tection, happens-before [48] based detection and hybrid detection combining both lock-set

and happens before approaches. The lock-set based approach tracks lock sets that are used

to protect each shared memory location. It reports data race bugs when the lock set of

a memory location becomes empty. According to Lamport's happens-before relation [48],
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happens-before detection traces synchronization and causality operations. It calculates the

happens-before order among memory accesses and reports data race bugs if there is no

happens-before order between two con
icting accesses. These two approaches have their

own advantages; the lock-set approach can report data race bugs that do not covered during

the monitoring runs, while the happens-before approach is more accurate with lower false-

positive rates. Hybrid approaches [98, 73] have been proposed to combine their advantages.

It can detect more bugs than the happens-before approach with lower false positive rates

than the lock-set approach.

2.1.2 Atomicity Violation and Order Violation Detection

Di�erent from data races that are semantic-unrelated, atomicity violation and order viola-

tion associate with program semantics. Speci�cally, atomicity violation bugs are caused by

concurrent execution unexpectedly violating the atomicity of a certain code region assumed

by programmers; order violation bugs are caused by concurrent execution unexpectedly vi-

olating the order relationship of two (groups of) operations assumed by programmers [64].

Many techniques have been proposed that require programmers to specify expected

atomic code regions or order relationships. They provide a new programming language

feature, such as a new type system, and an associated veri�cation system to detect potential

atomicity violation bugs or order violation bugs. A limitation of these techniques is that

it is impractical to rely on programmers' annotations to specify all semantic information.

To address this limitation, several detection tools have been proposed and do not require

manual annotations. SVD [94] uses data dependency and control dependency to infer atomic

regions. AVIO [65] automatically extracts access invariants and atomic regions from correct

runs. MUVI [63] automatically infer multi-variable correlations through static source code

analysis and data mining.
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2.1.3 E�ect-oriented Detection

Apart from above cause-oriented approaches, an e�ect-orient detection technique is proposed

recently. It starts from potential failure/error sites of a program and detect concurrency bugs

in a backward fashion to �nd possible interleavings that can trigger the failure. ConMem

[102] handles memory errors caused by concurrency bugs starting from potential memory

error sites (e.g., pointer dereference) and conducting dynamic analysis to identify the buggy

interleaving that leads to the memory errors, such as null pointer dereferences, dangling

pointer, and uninitialized reads. ConSeq [101] handles semantic errors caused by concurrency

bugs starting from potential failure sites (e.g., assertion failures) and conducting intra-thread

slicing to locate potential critical reads and buggy interleavings that leads to the failures,

such as assertion failures, error message prints.

2.2 DCbugs and Distributed System Model Checkers

2.2.1 Distributed Concurrency Bugs (DCbugs)

Distributed concurrency bugs (DCbugs) are caused by non-deterministic orders of distributed

events in distributed systems. Distributed events could be message arrivals, hardware crash-

es/reboots, network timeout, etc.

A comprehensive real-world DCbug study, TaxDC [51], focusing on bug triggering, bug

symptom, and bug �xing has been conducted. TaxDC studies 104 DCbugs collected from

widely-deployed cloud-scale datacenter distributed systems including Cassandra, Hadoop

MapReduce, HBase, and ZooKeeper. For bug manifestation conditions, the study shows

that 64% of DCbugs are triggered by untimely delivery of messages, and 32% of DCbugs are

triggered by untimely faults or reboots, and occasionally by a combination of both (4%).

The �ndings of this study have driven DCbug research along many directions, including but

not limited to bug detection and �xing. Our work, DCatch in Chapter 4 and FCatch in
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Chapter 5, is also directly motivated by the �ndings from this study.

2.2.2 Distributed System Model Checkers

Distributed system model checkers (ordmck in short) is an implementation-level model

checker. It works by intercepting non-deterministic distributed events and permuting their

ordering and hereby pushing the target system into corner-cases and unearthing hard-to-�nd

bugs. However, the more events it included, the more scalability issues will arise due to the

state-space explosion.

To address the state-space explosion issue, distributed system model checkers have many

variance proposed in literature recently. Existing dmcks adopt a random walk or basic reduc-

tion techniques. MACEMC [46] combines DFS and random walk biased with weighted events

manually labeled by testers. A popular reduction technique widely adopted in state-of-the-

art dmcks is dynamic partial order reduction (DPOR [25]) which exploits the independence

of events to reduce the state explosion. DPOR-based dmcks can be categorized into black-

box manner or white-box manner. Black-box approaches (CrystalBall [95], dBug [88], and

MoDist [96]) treat target systems as a complete black box and permute events without

any domain-speci�c knowledge. White-box approaches (SAMC [50] and FlyMC [67]) further

reduce redundant event orderings by leveraging simple semantic knowledge of target systems.

2.3 LCbug Fixing

Concurrency bugs are the most di�cult to �x correctly among common bug types [64,

97] with many incorrect patches released. Recently, several automated �xing techniques

dedicated to LCbugs in multi-thread systems have been proposed.

Gadara [90] is the �rst automated approach to systematically address deadlock bugs.

It adds new lock to disallow the buggy interleaving that expose deadlock bugs. AFix [40]

is the �rst automated atomicity violation �xing approach proposed by adding new lock
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primitives to synchronize the interleaving statements between atomic regions. Axis [60]

models a program's concurrent property as Petri nets and uses the SBPI control theory as

the theoretical foundation to �x atomicity violations. Grail [58] builds a contextual analysis

model to further distinguish di�erent aliasing contexts to achieve a better e�ciency. CFix

[42] is the �rst automated order violation bug �xing technique proposed by inserting signal

and wait primitives to enforce order timing.

2.4 Empirical Studies of Timing Bugs

Empirical studies have always been crucial to guide research e�ort towards the improvement

of software reliability. Several dedicated studies have been conducted focusing on timing

bugs in multi-threaded systems and distributed systems [64, 26, 51], and synchronization-

related code changes [29, 74, 80, 92]. Many other studies about cloud systems also cover

timing bugs in their root cause reviewing [31, 32].

These studies use two types of data sources: (1) open-source bug databases, which con-

tain detailed information about bugs found during both in-house code review/testing and

production runs [31, 51, 99, 64, 26, 29, 74, 80, 92]. They could not check which issue ac-

tually cause production incidents and how they were resolved during production (all issues

ended up with code patches). (2) news reports about software failures or cloud outages,

which contain detailed failure-impact information [32]. Most (76%) public reports do not

discuss details about how outages were resolved, and many (60%) do not explain outage

root causes. Consequently, this study mainly focuses on cloud system outage duration and

coarse-granularity cause breakdowns.
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CHAPTER 3

EMPIRICAL STUDY OF TIMING BUGS

Cloud services have become the backbone of today's computing world. Runtimeincidents,

which adversely a�ect the expected service operations, are extremely costly in terms of user

impacts and engineering e�orts required to resolve them. Hence, such incidents are the

target of much research e�ort. Unfortunately, there is limited understanding about timing-

bug incidents that actually happen during production runs: what cause them and how were

they resolved in the cloud.

Although great progress has been made, patches generated by existing tools for LCbugs

are mostly di�erent from patches manually designed by developers. Existing auto-patches

mostly insert locks and lock-related synchronization operations into software [40, 58, 60, 90];

yet, less than one third of real-world concurrency bugs are �xed by developers through adding

or changing lock operations [64]. Clearly, we need a better understanding of the gap between

automatically generated patches and manually generated patches, so that we can eventually

design auto-�xing tools that generate not only correct but also simple and well-performing

patches, appealing to developers.

This chapter presents our empirical study of timing bugs in production-run cloud service

systems and multi-threaded systems.

3.1 Timing Bugs in Production-run Cloud Service Systems

3.1.1 Methodology

Microsoft Azure production incidents can be reported by (Microsoft internal or external)

users or by system watchdogs that keep monitoring if certain system metric goes beyond a

pre-con�gured threshold. Every incident is recorded in the incident database, associated with

information such as user description or watchdog report, developers' discussion, severity-level
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tag, root cause description, work items issued to developer teams (if any), resolving strategy,

the incident-impact duration, etc.

In this study, we focus on a set of 112 incidents. They areall the incidents that satisfy

the following four conditions in a 6-month period (March 5th, 2018 { September 5th, 2018):

(1) the incident is not a false alarm and its severity level indicates that new features

cannot commit into production environment until this incident is resolved;

(2) the incident led to changes in the cloud service, such as bug-�xing patches, testing

enhancement, etc;

(3) the incident report contains enough information for us to judge the root cause;

(4) the root cause of the incident are software bugs.

Note that not all the 112 incidents we studied a�ected Microsoft's external customers.

Many incidents a�ected Microsoft's internal users and many others were detected by internal

users and automated watchdogs and mitigated before external customers reported them.

Our study aims to answer four questions: (1) how common are timing bugs; (2) how

common are message timing bugs and fault timing bugs; (3) what's the resource being

competed; (4) how were they resolved in the cloud.

3.1.2 Characteristic Study and the Findings

Q1: how common are timing bugs? Overall, there are about 15% software-bug incidents

in our study set are caused by timing bugs. Timing bugs are the third biggest root cause

category in our study.

Q2: how common are message timing bugs and fault timing bugs? Among all

timing bugs in our study set, 30% cases are message timing bugs; 30% are fault timing bugs.

Q3: what's the resource being competed? half of these bugs are racing on persistent

data like cached �rewall rules, con�guration entries, znodes in Zookeeper, database data,

and others, instead of shared memory variables that traditional timing bugs race on. For
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Figure 3.1: Timing-bug incident resolve strategy

example, in one case, two system processes read and write the same entry in the machine's

con�guration �le. Races between these two processes' reads and writes eventually led to

repeated machine restarts.

Q4: how were they resolved? Facing tight time pressure, more often than not,

timing-bug incidents were resolved through a variety ofmitigation techniques (84%) without

patching the buggy code (16%), providing quick solutions to users and maximizing service

availability. Note that, it is possible that an incident �rst got resolved by a mitigation

technique and later led to a software patch that was not tracked by the incident report.

We categorize all mitigation techniques into three categories: code mitigation, data mit-

igation, and running-environment mitigation. As shown in Figure 3.1, these three strategies

are all widely used, with environment mitigation the most common in our study.

Code mitigation mainly involves rolling back the software to an older version, or disabling

certain code snippets such as an unnecessary/outdated sanity check that failed users' requests

and caused severe incidents.

Data mitigation involves manually restoring, cleaning up, or deleting data in a �le, a

cloud table, etc.

Running-environment mitigation cleans up dynamic environment through killing/restart-

ing processes, migrating workloads, adding fail-over resources, etc.
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App. Description
# Bugs

AV OV

Ap ache Web Server 8 5
Mo zilla Browser Suite 26 15
My SQL Database Server 10 2
OpenO�ce O�ce Suite 3 2

Misc. Cherokee web server, Click router, FFT benchmark, PBZIP2
compressor, Transmission bittorrent client, and X264 encoder

1 5

Total 48 29

Table 3.1: Applications and bugs in study

3.2 Manual Patch Study for Timing Bugs in Multi-threaded

Systems

3.2.1 Methodology

Our study aims to answer three sets of questions.

What are manual patches like? What are the �x strategies and synchronization

primitives used by manual patches? Are all concurrency bugs �xed by constraining the

timing? Does any patch change sequential semantics? How do patches vary for di�erent

types of concurrency bugs?

How are existing techniques? How do existing tools work, particularly compared

with patches manually developed by developers?

How about the future? How might future tools generate patches that match the

quality of manual patches?

To answer the above questions, we review the manual patches of 77 bugs. These bugs

come from two sources. The �rst is the real-world LCbug benchmark suite created by

previous work [64]. Among the 74 non-deadlock bugs in that suite1, a couple of them are

not completely �xed by developers and hence are excluded from our study. The remaining

1. Our study focuses on non-deadlock concurrency bugs.
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71 are shown in the top half of Table 3.1. The second part includes all the bugs evaluated by

recent concurrency bug detection and �xing papers [40, 42, 101] that have available manual

patches and are not included in the �rst source, shown in the \Misc." row of Table 3.1.

These bugs come from a broad set of C/C++ open-source applications, that include both

big server applications (e.g., MySQL database server and Apache HTTPD web server) and

client applications (e.g., Mozilla web-browser suite, and many others). These applications

are all widely used, with a long software development history.

Among these bugs, 48 of them are atomicity violation (AV ) bugs and 29 of them are

order violation (OV ) bugs. We carefully study the �nal patch of each bug. We also read

developers' discussion on the on-line forums [1, 2, 3, 4] and software source code to obtain

a deep understanding of each patch. Every bug was reviewed by all authors, with the patch

categorization cross-checked by all authors.

Threats to Validity Like all empirical studies, our study cannot cover all concurrency

bugs. Our study only looks at C/C++ user-level client and server applications, and does not

cover Java programs, operating systems software, or high-performance computing software.

Our study does not look at deadlock bugs, and also does not cover bugs that are related to

the newly minted C++11 concurrency constructs. Our study does not and cannot cover all

concurrency bugs in Apache, MySQL, Mozilla, and other software in our study. Our main

bug source, the benchmark from previous work [64], is based on �xed concurrency bugs

randomly sampled from the above applications' bug databases. All our �ndings should be

interpreted with our methodology in mind.

3.2.2 What are Manual Patches Like?

Synchronization Primitives As shown in Table 3.2, a big portion of bugs are �xedwithout

using any synchronization primitives (about half). Most of these bugs are �xed without

disabling the buggy timing, which will be explained later.
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Lock Con.Var. Create Join Misc. None

AV 18 1 0 0 2 27
OV 4 3 6 4 5 7

Total 22 4 6 4 7 34

Table 3.2: Synchronization primitives in patches

Prevention

Timing Instruction Data Tolerance

AddS MoveS Bypass Private

AV 15 6 13 8 6
OV 10 14 1 0 4

Ap 2 5 3 0 3
My 1 3 2 3 2
Mo 14 10 8 5 5
Op 4 0 1 0 0
Misc. 4 2 0 0 0

Total 25 20 14 8 10

Table 3.3: LCbug manual �x strategies

Among patches that leverage synchronization primitives, there is a clear distinction be-

tween atomicity violation and order violation patches. In AV patches, lock is the single dom-

inant synchronization primitive; rarely, condition variables, interrupt disabling, and atomic

instructions are used. In OV patches, condition variable signal-waits, thread creates, and

thread joins are about equally common. Occasionally, customized synchronizations like spin

loops are used.

Fix Strategies Concurrency bugs are caused by instructions that access shared variables

under unexpected timing. Patches can prevent these bugs in three ways: (1) change the

timing among those instructions (Timing in Table 3.3), which can be achieved by either

adding new synchronization (AddS) or moving around existing synchronization (MoveS); (2)

bypass some instructions under the original buggy context (Instruction Bypass); (3) make

some shared variables private under the original buggy context (Data Private). Patches
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Figure 3.2: A bug in Tranmission, with `+' and `-' denoting its manual/HFix patch.

could also tolerate the e�ect of concurrency bugs, instead of preventing them (Tolerance).

The break-down of these strategies is shown in Table 3.3.

Overall, as shown in Table 3.3, constraining the timing through new or existing synchro-

nization is the most common �x strategy, applied to almost 60% of bugs in study. Other

�x strategies are not as common, but still non-negligible, each applied to at least 10% of

studied bugs.

Among patches that use theTiming �x strategy, about half add new synchronization

operations into the software, and the other half leverage existing synchronization operations.

For the latter type, the patch is always done by code movement. For example, the real-world

bug illustrated in Figure 3.2 is �xed by moving variable initialization (A) before child-thread

creation in the parent thread, so that the child thread is guaranteed to read an already-

initialized value (B).

8 bugs are �xed by making some instructions involved in the bug access local, instead of

shared, variables. We will discuss them in more details in Chapter 3.2.3.

Patches with instruction-bypassing and bug-tolerance strategies change the sequential

computation semantics (24 out of 77). Note that all previous concurrency-bug �xing work

[19, 40, 42, 45, 58, 59, 60] uses anoppositeassumption and only produce patches that preserve

sequential semantics.
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3.2.3 How about Existing Techniques?

Adding locks and condition variables Recently, several tools have been built to auto-

matically �x concurrency bugs by adding locks, such as AFix, Grail, and Axis [40, 58, 60],

and condition variables, such as CFix [42]. These techniques provide general �xing capability

that applies for a wide variety of concurrency bugs.

Our empirical study shows that these techniques indeed emulate the most common type

of manual �x strategies { add new synchronization (AddS), as shown in Table 3.3.

However, there are many bugs that arenot �xed through Add S by developers (> 40%

in our study). In many cases, other �x strategies can produce much simpler patches and

introduce fewer synchronization operations into software than AddS, such as in Figure 3.2.

Another limitation for this series of tools is that they only look at two types of syn-

chronization primitives: locks and condition variables. Locks are indeed the most dominant

primitive for �xing AV bugs. However, condition variables arenot the most dominant prim-

itive for �xing OV bugs, as shown in Table 3.2. In fact, among the 10 OV bugs that are

�xed by adding new synchronizations, only 3 of them are �xed by adding condition variable

signal/waits. Most of them are in fact �xed by adding thread-join operations.

Data privatization Another �x strategy automated by recent research is data pri-

vatization [37]. Previous technique targets two types of AV bugs, where the atomicity of

read-after-write (RAW) accesses or read-after-read (RAR) accesses can be violated. Its patch

creates a temporary variable to bu�er the result of an earlier write access (in case of RAW)

or read access (in case of RAR) to or from shared variables, and let a later read from the

same thread to directly access this temporary variable, instead of the shared variable.

Our empirical study shows that data privatization is indeed a common �x strategy for

AV bugs in practice, taken by developers to �x 8 out of 48 AV bugs in our study.

However, our study also found that the data privatization scheme used by developers

goes beyond what used by existing research. First, some write-after-write (WAW) atomicity
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violations are also �xed by data privatization by developers. For example, Mozilla-52111

and Mozilla-201134 are both �xed by making the �rst write outputs to a temporary local

variable, so that an interleaving read will not see the intermediate value. Second, in several

cases, the bugs are �xed not by introducing a temporary local variable, but by changing

the declaration of the original shared variable to make it a local variable. For example, in

MySQL-7209, Mozilla-253786 and MySQL-142651, developers realize there are in fact no

need to make the buggy variables shared. Only 3 bugs are �xed by developers following

exactly the same way as existing research proposes.

3.2.4 How about the Future?

Our study points out directions for future research in automated concurrency-bug �xing.

Speci�cally, future work can further re�ne existing auto-�x strategies, such as data priva-

tization, following our study above; future research can also try to automate manual �x

strategies that have not been well explored before, which we will discuss below.

Automating Add join for OV bugs Although many recent research tools apply AddS

to �x concurrency bugs [40, 42, 58, 60], they only add lock-related synchronization into

software, including locks and condition variables. This is particularly problematic for OV

bugs, as many manual OV patches are unrelated to locks or condition variables. Our work

along this direction will be presented in Chapter 6.

Automating Move S for concurrency bugs MoveS leverages existing synchronization

in software to �x concurrency bugs. It is one of the most common manual �x strategies for

both AV (6 out of 48) and OV bugs (14 out of 29). Unfortunately, it has never been

automated by previous research to �x real-world bugs in large applications. Our work along

this direction will be presented in Chapter 6.

Semantic changing �x for concurrency bugs Bypassand Toleranceare two intrigu-

ing concurrency-bug �x strategies, as they change the sequential semantics and were never
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Patch Location Patch Structure

AV c AV r OVA OVB Misc Skip UnSkip Misc

B 2 11 1 0 0 13 0 1
T 2 3 1 3 1 6 4 0

Table 3.4: Semantic-changing patches (B: Bypass strategy; T: Tolerance strategy).

explored by previous research. They are common enough to deserve attention { together,

they are chosen for 24 out of 77 real-world bugs in our study. Their patches are often simple,

mostly between 1{3 lines of code changes.

Our in-depth study shows that these patches are not ad-hoc. Instead, they follow common

patterns that can be leveraged by automated tools, as shown in Table 3.2.4.

First, the patch location is almost always around key operations in the bug report, as

shown in Table 3.2.4.

Second, the patch structure is mostly simple. Naturally, all bypass patches add condition

checks to bypass code. Interestingly, almost all tolerance patches are also about control 
ow

changes. Some add condition checks to bypass failure-inducing operations, such as a NULL-

pointer dereference, after the unsynchronized accesses. Others change existing condition

checking, so that some code that was originally skipped under the unsynchronized accesses

would now get executed under the patch.

3.3 Conclusion

This chapter presented an in-depth study about timing-bug incidents in production-run cloud

service systems, and timing bugs in multi-threaded systems. The �ndings revealed in our

study provide motivation and guidance to future research in tackling timing bugs in cloud

distributed systems and multi-threaded systems and improving the software reliability.
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CHAPTER 4

DCATCH: AUTOMATICALLY DETECTING MESSAGE

TIMING BUGS IN CLOUD SYSTEMS

In big data and cloud computing era, reliability of distributed systems is extremely impor-

tant. Unfortunately, message timing bugs widely exist. They hide in the large state space

of distributed cloud systems and manifest non-deterministically depending on the timing of

distributed computation and communication. Due to their new non-determinism, message

interleaving, which goes beyond traditional thread interleaving in multi-threaded systems,

existing timing bug models and detection tools for multi-threaded concurrency bugs cannot

precisely capture and accurately predict them. E�ective models and techniques to detect

message timing bugs are desired.

This chapter presents a pilot solution, DCatch, in the world of DCbug detection. DCatch

predicts message timing bugs by analyzing correct execution of distributed systems. To build

DCatch, we design a set of happens-before rules that model a wide variety of communication

and concurrency mechanisms in real-world distributed cloud systems. We then build run-

time tracing and trace analysis tools to e�ectively identify concurrent con
icting memory

accesses in these systems. Finally, we design tools to help prune false positives and trigger

message timing bugs.

We have evaluated DCatch on four representative open-source distributed cloud systems,

Cassandra, Hadoop MapReduce, HBase, and ZooKeeper. By monitoring correct execution

of seven workloads on these systems, DCatch reports 32 message timing bugs, with 20 of

them being truly harmful.

26



4.1 Introduction

4.1.1 Motivation

Message timing bugs are non-deterministic and hide in the huge state space of a distributed

system spreading across multiple nodes. They are di�cult to avoid, detect, and debug.

There are only a few sets of approaches that tackle message timing bugs, to the best

of our knowledge: software model checking, veri�cation, veri�able language, record and

replay debugging. Although this set of techniques are powerful, they su�er from inherent

limitations. Distributed system model checkers [33, 46, 50, 87, 96] face state-space explosion

problems, making them di�cult to scale for many large real-world systems. Veri�cation

approaches [35, 91] require thousands of lines of proof to be written for every protocol.

Veri�able language [22] is not deployed, as low-level imperative languages are still popular

for performance reasons. Record and replay techniques [61] cannot help discover bugs until

software has failed and are not yet e�ective for debugging message timing bugs due to the

huge number of timing-related events in distributed systems.

In comparison, there is one approach that has been widely studied for combating LCbugs

in single-machine software but has yet been explored for DCbugs |dynamic bug detection

[24, 36, 44, 65, 66, 82]. In a nutshell, dynamic bug-detection techniques monitor and analyze

memory accesses and synchronization operations, and identify con
icting and concurrent

memory accesses as LCbug suspects.Con
icting means that multiple accesses are touching

the same memory location with at least one write access.Concurrent means that there is

no happens-beforecausality relationship between accesses, and hence accesses can happen

one right after the other in any order [48]. These techniques do not guarantee �nding all

bugs and often report many false positives. However, they can usually work directly on large

existing real-world systems implemented in popular languages, without much annotation or

code changes from developers.

27



Figure 4.1: Root cause of the message timing bug shown in Figure 1.2

Despite its bene�ts, bug-detection approach has not permeated the literature of combat-

ing DCbugs. Thus, in this chapter, we present one the �rst attempts in building DCbug-

detection tool to predict message timing bugs for distributed systems.

Our attempt of building a message timing bug detection tool is guided by our following

understanding of message timing bugs.

Opportunities Message timing bugs have fundamentally similar root causes as LCbugs:

unexpected timing among concurrent con
icting accesses to thesamememory location inside

one machine. Take the message timing bug in Figure 1.2 as an example. Although its

triggering and error propagation involve communication among multiple nodes, its root cause

is that event handler UnRegister could delete thejID -entry of jMap concurrently with a

Remote Procedure Call (RPC)getTask reading the same entry, which is unexpected by

developers (Figure 4.1).

This similarity provides opportunities for message timing bug detection to re-use the

theoretical foundation (i.e., happens-before ordering) and work 
ow of LCbug detection.

That is, we can abstract the causality relationship in distributed systems into a few happens-

before (HB) rules; we can then follow these rules to build an HB graph representing the

timing relationship among all memory accesses; �nally, we can identify all pairs of concurrent

con
icting memory accesse operations based on this HB graph and treat them as message

timing bug candidates.
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Challenges Message timing bugs and distributed systems also di�er from LCbugs and

single-machine systems in several aspects, which raise several challenges to message timing

bug detection.

1. More complicated timing relationship:Although root-cause memory accesses of mes-

sage timing bugs are inside one machine, reasoning about their timing relationship is com-

plicated. Within each distributed system, concurrent accesses are conducted not only at

thread level but also node level and event level, using a diverse set of communication and

synchronization mechanisms like RPCs, queues, and many more (exempli�ed by Figure 4.1).

Across di�erent systems, there are di�erent choices of communication and synchronization

mechanisms, which are not always standardized.Thus, designing HB rules for real-world dis-

tributed systems is not trivial. Wrong or incomplete HB modeling would signi�cantly reduce

the accuracy and the coverage of message timing bug detection.

2. Larger scales of systems and bugs:Distributed systems naturally run at a larger scale

than single-machine systems, containing more nodes and collectively more dynamic memory

accesses. Message timing bugs also operate at a larger scale than LCbugs. For example,

the message timing bug shown in Figure 1.2 involves three nodes (client, AM, and NM) in

its triggering and error propagation. The larger system scale poses scalability challenges to

identify message timing bugs among huge numbers of memory accesses; the larger bug scale

also demands new techniques in bug impact analysis and bug exposing.

3. More subtle fault tolerance:Distributed systems contain inherent redundancy and aim

to tolerate component failures. Their fault-tolerance design sometimes cures intermediate

errors and sometimes ampli�es errors, making it di�cult to judge what are truly harmful

bugs. For example, in Figure 4.1, thejMap.get(jID) in Thread-1 actually executes concur-

rently with two con
icting accesses in Thread-2:jMap.put(jID,task) from the Register

handler, and jMap.remove(jID) from the UnRegister handler. The former isnot a bug,

due to the re-try while loop in NM; the latter is indeed a bug, as it causes the re-try while
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loop in NM to hang. Thus, the subtle fault tolerance features pose challenges in maintaining

accuracy of message timing bug detection.

4.1.2 Contributions

Guided by the above opportunities and challenges, we built DCatch, to the best of our

knowledge, a pilot solution in the world of message timing bug detection. The design of

DCatch contains two important stages: (a) design the HB model for distributed systems

and (b) design DCatch tool components.

HB Model: First, we build an HB model on which DCatch will operate, based on our

study of representative open-source distributed cloud systems. This HB model is composed

of a set of HB rules that cover inter-node communication, intra-node asynchronous event

processing, and intra-node multi-threaded computation and synchronization. The details

will be discussed in Chapter 4.2.

DCatch tool components: Next we build DCatch, our message timing bug detection

tool. Although it follows the standard work 
ow of many LCbug detectors, our contribution

includes customizing each step to address unique challenges for message timing bugs.

1. Run-time tracer traces memory accesses, event operations, inter-node RPCs, socket

communication, and others as the system runs. The scope and granularity of this component

is carefully designed to focus on inter-node communication and computation, which helps us

to address the large-scale challenge in message timing bug detection and make DCatch scale

to large real-world distributed cloud systems (Chapter 4.3.1).

2. O�ine trace analysis processes run-time traces to construct an HB graph for all

recorded memory accesses and reports all pairs of concurrent con
icting accesses as message

timing bug candidates. Our contribution is the implementation of DCatch HB model for

real-world distributed systems (Chapter 4.3.2).
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3. Static pruning analyzes the program to �gure out what might be the local and dis-

tributed impact of a message timing bug candidate. It estimates which message timing bug

candidates are unlikely to cause failures, avoiding excessive false positives (Chapter 4.4).

4. Triggering re-runs the system and manipulates the timing of distributed execution

according to the bug report, while considering the diverse concurrency and communication

mechanisms in distributed systems. It helps trigger true bugs and further prunes false

positives (Chapter 4.5).

We evaluated DCatch on 4 varying real-world distributed systems, Cassandra, HBase,

Hadoop MapReduce, and ZooKeeper. We tested 7 di�erent workloads in total on these

systems. Users have reported timing-related failures under these workloads. DCatch reports

32 message timing bugs. With the help of DCatch triggering component, we con�rmed that

20 out of these 32 message timing bugs are indeed harmful: 12 of them explain the 7 failures

we were aware of and the remaining 8 could lead to other failures we were unaware of. The

detailed experimental results are presented in Chapter 4.7.

4.2 DCatch Happens-Before (HB) Model

Goals & Challenges Timing relationship is complicated in distributed systems. For ex-

ample, to understand the timing betweenR and W in Figure 4.2, we need to consider thread

(step 2 in Figure 4.2), RPC (step 3), event handling (step 4 & 5), ZooKeeper synchronization

service (step 6 & 7), etc. Missing any of these steps will cause R and W to be incorrectly

identi�ed as concurrent with each other.

Our goal here is to abstract a set of HB rules by studying representative distributed

cloud systems. Every ruleR represents one type of causality relationship between a pair of

operations1, denoted aso1
R=) o2. These rules altogether allow reasoning about the timing

between any two operations: if a set of HB rules chaino1 and o2 together o1
R1
=) oo1

R2
=)

1. An operation could be a memory access, a thread creation, etc.
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Figure 4.2: A wide variety of causality relationships in HBase.

32



App
Inter-Node Intra-Node

Synchronous Asynchronous Custom Synchronous Asynchronous
RPC Socket Protocol Threads Events

Cassandra - X - X X
HBase X - X X X
MapReduce X - X X X
ZooKeeper - X - X X

Table 4.1: Concurrency and Communication in Distributed Systems

oo2:::ook� 1
Rk
==) o2, o1 must happen beforeo2, denoted aso1 =) o2. If neither o1 =) o2 nor

o2 =) o1 holds, they are concurrent and hence can execute side by side in any order. This

set of HB rules need to be comprehensive and precise in order for DCatch to achieve good

bug detection accuracy and coverage.

Why do we need a new model? On one hand, HB models were thoroughly studied

for single-machine systems, including both multi-threaded software [72] and event-driven

applications [36, 69, 79]. However, these models do not contain all causality relationships in

distributed systems, and may contain causality relationships not held in distributed systems.

On the other hand, distributed-system debugging tools [68, 86] proposed meta-data prop-

agation techniques to track coarse-granularity causality relationship betweenuser-speci�ed

operations. However, without a formal HB model, they are unsuitable for message timing

bug detection, where �ne-granularity causality relationship needs to be computed among a

huge number of memory accesses.

Below we present the concurrency and communication mechanisms that we learn from

studying representative distributed systems (Table 4.1), from which we abstract HB rules.
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Figure 4.3: Concurrency and communication in MapReduce

4.2.1 Inter-node Concurrency and Communication

Every distributed system involves multiple parallel-executing nodes that communicate with

each other through messages (Figure 4.3a). We abstract message-related HB rules, short as

Rule-M , based on di�erent communication patterns.

Synchronous RPC A thread in node n1 could call an RPC function r implemented by

node n2, like step (3) in Figure 4.2. This thread will block until n2 sends back the RPC

result. RPC communication implies the following HB rules: making an RPC callr on n1,

denoted asCreate (r, n1), happens before the beginning of the RPC execution onn2, Begin

(r, n2) ; the end of the RPC execution,End (r, n2), happens before the return from the

RPC call r on n1, Join (r, n1).

Rule-M rpc : Create (r , n1) M rpc
=== ) Begin (r , n2);

End (r , n2) M rpc
=== ) Join (r , n1).

Asynchronous Socket A thread in node n1 sends a messagem to node n2 through

network sockets. Unlike RPC, the sender does not block and continues its execution. The

sending happens before the receiving.

Rule-M soc: Send (m, n1) M soc
=== ) Recv (m, n2).

In addition to the above two basic communication mechanisms, we also found the follow-
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ing common custom synchronization protocols, implemented using a combination of RPC/-

socket communication and intra-node computation.

Custom Push-Based Synchronization Protocol Node n1 updates a statuss to a

dedicated coordination nodenc, and nc noti�es all subscribed nodes, such asn2, about this

update. The update ofs by n1, Update (s,n1), happens before the noti�cation delivered at

n2, Pushed (s,n2). For example, HBase nodes sometimes communicate through ZooKeeper:

one node registers azknodewith a speci�c path in ZooKeeper; ZooKeeper will then notify

this node of all changes to thiszknodefrom other nodes, like steps (6) and (7) in Figure 4.2.

Rule-M push : Update (s, n1) M push
==== ) Pushed(s, n2).

Note that, this rule is not redundant given Rule-Mrpc and Rule-Msoc. We can decompose

this rule into three chains of causality relationship: (1)Update(s, n1) =) Recv(s, nc); (2)

Recv(s, nc) =) Send(s, nc); (3) Send(s, nc) =) Pushed(s, n2). Chain (2) is very di�cult

to �gure out, as it involves complicated intra-node computation and synchronization innc,

which guarantees that every node interested ins gets a noti�cation. Even for chain (1) and

(3), there is no guarantee that Rule-Mrpc and Rule-Msoc can �gure them out, because the

communication betweenn1/ n2 and nc often contains more than one RPC or socket message.

Custom Pull-Based Synchronization Protocol Noden2 keeps pollingn1 about status

s in n1, and does not proceed until it learns thats has been updated to a speci�c value.

Clearly, the update ofs in n1 happens before the use of this status onn2.

Rule-M pull : Update(s, n1) M pull
=== ) Pulled(s, n2).

This is similar with the distributed version of the while-loop custom synchronization

in single-machine systems [89, 93]. Figure 4.1 shows an example of this HB relationship:

jMap.put (jID, task) in AM happens before the exit of thewhile -loop in NM.

This rule is not redundant given other rules due to complicated semantics insiden1:

traditional HB rules cannot establish the causality betweens being set ands being read by
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an RPC function or being serialized into a socket message.

4.2.2 Intra-node Concurrency and Communication

Synchronous multi-threaded concurrency Within each node, there are multiple pro-

cesses and threads, as shown in Figure 4.3b2. The rules here are about classic fork/join

causality: the creation of a threadt (or process) in the parent thread, denoted asCreate(t),

happens before the execution oft starts, Begin (t). The end oft's execution,End (t) , happens

before a successful join oft Join (t) .

Rule-T fork : Create (t) T fork
=== ) Begin (t).

Rule-T join : End (t) T join
===) Join (t).

Asynchronous event-driven concurrency All the systems in Table 4.1 conduct asyn-

chronous event-driven processing, like steps (4)(5) in Figure 4.2, essentially creating con-

currency inside a thread. Events could be enqueued by any thread, and then processed by

pre-de�ned handlers in event-handling thread(s). The enqueue of an evente, Create (e),

happens before the handler-function ofe starts, denoted asBegin (e).

Rule-E enq : Create (e) E enq
===) Begin (e).

For two eventse1 and e2 from the same queue, the timing between their handling depends

on several properties of the queue. For all the systems that we have studied, all the queues

are FIFO and every queue has only one dispatching thread, one or multiple handling threads.

Consequently, the handling ofe1 and e2 is serialized when their queue is equipped with only

one handling thread, and is concurrent otherwise. We refer to the former type of queues as

single-consumer queues. All the queues in ZooKeeper and some queues in MapReduce are

single-consumer queues.

Rule E serial : End (e1) E serial
==== ) Begin (e2), if Create (e1) =) Create (e2); e1; e2 2 Q; Q

2. MapReduce contains multiple processes in one node not shown in �gure.
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is single-consumer FIFO queue.

Previous work has built HB rules for single-machine event-driven applications, particu-

larly Android apps [36, 69, 79]. In comparison, some complicated queues (e.g., non-FIFO

queues) and corresponding rules observed by previous work have not been observed in these

distributed systems.

Sequential program ordering According to the classical HB model [48], the execution

order within one thread is deterministic and hence has the following rule.

Rule P reg : o1
P reg
===) o2, if o1 occurs beforeo2 during the execution of a regular thread.

We need to revise this rule for threads that are involved in asynchronous computing.

Speci�cally, for two operations inside an event/RPC/message handling thread, sequential

program ordering exists between them only when they belong to the same event/RPC/mes-

sage handler function.

Rule P nreg : o1
Pnreg
=== ) o2, if o1 occurs beforeo2 during the execution of an event handler,

a message handler, or an RPC function.

4.2.3 Summary

The aboveMTEP rules constitute the DCatch HB model. Our evaluation will show that

every rule is crucial to the accuracy and coverage of message timing bug detection (Chapter

4.7.4). For the real-world example demonstrated in Figure 4.2, we can now inferW ) R, be-

cause of the following chains of happens-before relationship:W P reg
===) Create (t) T fork

=== ) Begin

(t) P reg
===) Create (OpenRegion, HMaster) M rpc

=== ) Begin (OpenRegion, HRS) Pnreg
=== ) Create (e)

E enq
===) Begin (e) Pnreg

=== ) Update (RS...OPENED, HRS) M push
==== ) Pushed (RS...OPENED, HMas-

ter) Pnreg
=== ) R.

Note that, our model is not the only viable HB model for distributed systems. Our model

abstracts away some low-level details in RPC and event libraries. For example, incoming
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RPC calls are �rst put into queue(s) before assigned to RPC threads, but our Rule-Mrpc

abstracts away these queues inside RPC library; between the enqueue of an event and the

beginning of the event handling, a dedicated thread would conduct event dispatching, which

is also abstracted away in our Rule-Eenq.

Our model also intentionally ignores certain causality relationships that do not a�ect

our message timing bug detection. For example, our model does not consider condition-

variable notify-and-wait causality relationship, because it is almost never used in the inter-

node communication and computation part of our studied distributed systems; we do not

consider lock synchronization in this model, because lock provides mutual exclusions not

strict ordering.

Our model could also miss some custom synchronization protocols in distributed systems.

Next few chapters will describe the design of the four components of DCatch based on the

model de�ned above.

4.3 DCatch Tracing and Trace Analysis

Given our HB model, we began building the DCatch tool. As �rst steps, we need to (1)

trace the necessary operations and (2) build the HB graph and perform analysis on top.

Below we describe how these work and how we address tracing and analysis challenges such

as reducing memory access traces and applying the MTEP rules correctly.

4.3.1 DCatch Tracing

DCatch produces a trace �le for every thread of a target distributed system at run time.

These traces will then allow trace analyzer to identify message timing bug candidates. The

detailed implementation is based on WALA, a static Java bytecode analysis framework, and

Javassist, a dynamic Java bytecode transformation framework; more implementation details

are discussed in Chapter 4.6.
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Which operations to trace?

Memory-access tracing Naively, we want to record all accesses to program variables

that could potentially be shared among threads or event handlers. However, this exhaustive

approach would lead to huge traces that are expensive or even cannot be processed for many

real-world distributed system workloads as we will see in Chapter 4.7.4.

Fortunately, such excessive logging is unnecessary for DCbug detection. DCbugs are

triggered by inter-node interaction, with the root-cause memory accesses in code regions

related to inter-node communication and corresponding computation, not everywhere.

Following this design principle, DCatch traces all accesses to heap objects and static

variables in the following three types of functions and their callees: (1) RPC functions; (2)

functions that conduct socket operations; and (3) event-handler functions. The third type is

considered because they conduct many pre- and post-processing of socket sending/receiving

and RPC calls.

HB-related operation tracing DCatch traces operations that allow its trace analysis

to apply the MTEP rules, as shown in Table 4.2. DCatch automatically identi�es these

operations at run time using the Javassist infrastructure. The implementation details are

discussed in Chapter 4.6.

For push-based synchronization, the current prototype of DCatch focuses on the syn-

chronization service provided by ZooKeeper, as discussed in Chapter 4.2.1. DCatch traces

ZooKeeper APIsZooKeeper::create , ZooKeeper::delete , and ZooKeeper::setData as

Updateoperations, and ZooKeeperWatcherevents with event typesNoteCreated, NodeDeleted,

and NodeDataChangedas Push operations. The parameters, event types, and timestamps

help DCatch trace analysis to group correspondingUpdate and Push together. For pull-

based synchronization, theUpdate and Pull operations involve memory accesses, RPC calls,

and loops, which are already traced. We will explain how to put them together to construct
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M-Rule T-Rule E-Rule P-Rule

Creat (t), Join (t) X
Begin (t), End (t) X
Begin (e), End (e) X X
Create (e) X
Begin (r, n2), End (r, n2) X X
Create (r, n1), Join (r, n1) X
Send (m,n1) X
Recv (m, n2) X X
Update (s,n1) X
Pushed (s,n2) X X
Pull (s, n2) X

Table 4.2: HB-related Tracing in DCatch

pull-based HB relationship in Chapter 4.3.2.

Other tracing DCatch does not need to trace lock and unlock operations todetect mes-

sage timing bugs, because lock and unlock operations are not part of the DCatch HB model.

However, as we will see in Chapter 4.5.2, DCatch needs to know about lock/unlock oper-

ations to trigger some message timing bug candidates. Such information sometimes can

help avoid hangs when DCatch tries to manipulate the timing andtrigger a message timing

bug candidate. Therefore, DCatch also traces lock and unlock operations, including both

implicit lock operations (i.e., synchronized methods andsynchronized statements) and

explicit lock operations.

What to record for each traced operation?

Each trace record contains three pieces of information: (1) type of the recorded operation;

(2) callstack of the recorded operation; and (3) ID. The �rst two are straightforward. The

IDs help DCatch trace analyzer to �nd related trace records.

For a memory access, ID uniquely identi�es the accessed variable or object. The ID of

an object �eld is the �eld-o�set and the object hashcode. The ID of a static variable is the

variable name and its corresponding namespace.
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For HB-related operations, the IDs will allow DCatch trace analysis to correctly apply

HB rules. For every thread- or event- related operation, the ID is the object hashcode of the

corresponding thread or event object. For each RPC-related and socket-related operation,

DCatch tags each RPC call and each socket message with a random number generated at

run time (details in Chapter 4.6).

For lock/unlock operations, the IDs uniquely identify the lock objects, allowing DCatch's

triggering module to identify all lock critical sections and perturb the timing at appropriate

places (details in Chapter 4.5.2).

4.3.2 DCatch Trace Analysis

DCatch trace analyzer identi�es every pair of memory accesses (s, t), where s and t access

the same variable with at least one write and are concurrent with each other (i.e., no HB-

relationship between them), and considers (s, t) as a message timing bug candidate.

HB-graph construction

An HB graph is a DAG graph. Every vertex v represents an operationo(v) recorded in

DCatch trace, including both memory accesses and HB-related operations. The edges in the

graph are arranged in a way thatv1 can reachv2 if and only if o(v1) happens beforeo(v2).

To build such a graph, DCatch �rst goes through all trace �les collected from all threads

of all processes in all nodes, and makes every record a vertex in the graph.

Next, DCatch adds edges following our MTEP rules. We discuss how to applyRule

Eserial and Rule M pull below. We omit the details of applying other rules, as they are

straightforward and can be applied in any order | the ID of each trace record allows DCatch

to easily group related operations.

DCatch appliesRule E serial as the last HB rule. For every thread that handles a single-

consumer event queue, DCatch checks every pair ofEnd (ei ) and Begin (ej ) recorded in its
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trace, and adds an edge from the former to the latter, if DCatch �ndsCreate (ei ) =) Create

(ej ) based on those HB edges already added so far. DCatch repeats this step until reaching

a �xed point.

Applying Rule M pull requires program analysis. The algorithm here is inspired by how

loop-based custom synchronization is handled in LCbug detection [89, 93]. For every pair

of con
icting concurrent read and write f r , wg, we considerr to be potentially part of a

pull-based synchronization protocol if (1)r is executed inside an RPC function; (2) the

return value of of this RPC function depends onr ; (3) in another node that requests this

RPC, the return value of this RPC is part of the exit condition of a loopl. We will then run

the targeted software again, tracing only suchrs and all writes that touch the same object

based on the original trace. The new trace will tell us which writew� provides value for

the last instance ofr before l exits. If w� and r are from di�erent threads, we will then

conclude that w� in one node happens before the exit of the remote loopl in another node.

Due to space constraints, we omit the analysis details here. This part of the analysis is done

together with intra-node while-loop synchronization analysis. Although requiring running

the software for a second time, it incurs little tracing or trace analysis overhead, because it

focuses on loop-related memory accesses.

Message timing bug candidate report

The HB graph is huge, containing thousands to millions of vertices in our experiments.

Naively computing and comparing the vector-timestamps of every pair of vertices would be

too slow. Note that each vector time-stamp will have a huge number of dimensions, with

each event handler and RPC function contributing one dimension.

To speed up this analysis, DCatch uses the algorithm proposed by previous asynchronous

race detection work [79]. The algorithm computes a reachable set for every vertex in HB

graph, and then turns HB-relationship checking into a constant-time array lookup.
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4.4 Static Pruning

Not all message timing bug candidates reported by trace analysis can cause failures. This

is particularly true in distributed systems, which inherently contain more redundancy and

failure tolerance than single-machine systems. The high-level idea of pruning false positives

by estimating failure impacts has been used by previous LCbug detection tools [101, 102].

However, previous work only analyzes intra-procedural failure impacts. Thus, the challenge

is to conduct inter-procedural and inter-node impact analysis to better suit the failure-

propagation nature of message timing bugs in distributed systems.

To avoid excessive false positives, we �rst con�gure DCatch to treat certain instructions in

software asfailure instructions, which represent the (potential) occurrence of severe failures.

Then, given a bug candidate (s, t), DCatch statically analyzes related Java bytecode of the

target system to see ifs or t may have local (i.e., within one node) or distributed (i.e., beyond

one node) impact towards the execution of any failure instruction identi�ed above.

4.4.1 Identifying Failure Instructions

The current prototype of DCatch considers the following failures and identi�esfailure in-

structions accordingly: (1) system aborts and exits, whose corresponding failure instructions

are invocations of abort and exit functions (e.g.,System.exit ); (2) severe errors that are

printed out, whose corresponding failure instructions are invocations ofLog::fatal and

Log::error functions in studied systems; (3) throwing uncatchable exceptions, such as

RuntimeException ; (4) in�nite loops, where we consider every loop-exit instruction as a

potential failure instruction. Finally, if a failure instruction is inside a catch block, we also

consider the corresponding exception throw instruction, if available, as a failure instruction.

This list is con�gurable, allowing future DCatch extension to detect message timing bugs

with di�erent failures.
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4.4.2 Impact Estimation

For a message timing bug candidate (s, t), if DCatch fails to �nd any failure impact for s and

t through the analysis described below, this message timing bug candidate will be pruned

out from the DCatch bug list. All the implementation below is done in WALA code analysis

framework, leveraging WALA APIs that build program dependency graphs.

Local impact analysis We conduct both intra-procedural and inter-procedural analysis

for local impact analysis. Given a memory-access statements located in methodM , we �rst

check whether any failure instruction inM has control- or data- dependence ons. We apply

similar checking fort.

We then check whethers could a�ect failure instructions inside the callers ofM through

either the return value of M or heap/global objects. For the latter, DCatch only applies

the analysis to one-level caller ofM , not further up the call chain for accuracy concerns.

Note that, since DCatch tracer and trace analysis report call-stack information, our inter-

procedural analysis follows the reported call-stack ofs. Finally, we check whethers could

a�ect failure sites in the callee functions ofM through either function-call parameters or

heap/global variables. This analysis is also only applied to the one-level callee ofM . We

skip our algorithm details due to space constraints.

Distributed impact analysis As shown in Figure 4.1, an access in one node could lead to

a failure in a di�erent node. Therefore, DCatch also analyzes RPC functions to understand

the remote impact of a memory access.

Speci�cally, if we �nd an RPC function R along the callstack of the memory accesss,

we check whether the return value ofR depends ons. If so, we then locate the functionM r

on a di�erent node that invokes the RPC callR. Inside M r , we check whether any failure

instruction depends on the return value ofR. Note that locating M r is straightforward given

the HB chains already established by DCatch trace analysis.
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DCatch does not analyze inter-node impact through sockets, as socket communication is

not as structured as RPCs.

4.5 Message Timing Bugs Triggering and Validation

A DCatch bug report (s, t) still may not be harmful for two reasons. First,s and t may not

be truly concurrent with each other due to custom synchronization unidenti�ed by DCatch.

Second, the concurrent execution ofs and t may not lead to any failures, as the impact

analysis conducted in Chapter 4.4 only provides a static estimation. Furthermore, even for

those truly harmful message timing bug candidates, triggering them could be very challenging

in distributed systems.

To address this, we do not stop with just reporting potential message timing bugs, but

rather we also build this last component of DCatch to help assess message timing bug reports

and reliably expose truly harmful message timing bugs, hence an end-to-end analysis-to-

testing tool. This phase includes two parts: (1) an infrastructure that enables easy timing

manipulation in distributed systems; and (2) an analysis tool that suggests how to use the

infrastructure to trigger a message timing bug candidate. These two features are unique to

triggering message timing bugs.

4.5.1 Enable Timing Manipulation

Naively, we could perturb the execution timing by insertingsleep into the program, like

how LCbugs are triggered in some previous work [78]. However, this naive approach does

not work for complicated bugs in complicated systems, because it is hard to know how

long the sleep needs to be. More sophisticated LCbug exposing approach [71, 84] runs the

whole program in one core and controls the timing through thread scheduler. This approach

does not work for message timing bugs, which may require manipulating the timing among

operations from di�erent nodes, which are impractical to run on one core.
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Our infrastructure includes two components: client-side APIs for sending coordination-

request messages and a message-controller server (we refer to the distributed system under

testing as client here).

Imagine we are given a pair of operationsA and B, and we want to explore executingA

right before B and alsoB right before A. We will simply put a request API call before A

and a confirm API call right after A, and the same forB . At run time, the request API

will send a message to the controller server to ask for the permission to continue execution.

At the controller side, it will wait for the request-message to arrive from both parties, and

then grant the permission to one party, wait for the con�rm-message sent by theconfirm

API, and �nally grant the permission for the remaining party. The controller will keep a

record of what ordering has been explored and will re-start the system several times, until all

ordering permutations among all the request parties (just two in this example) are explored.

4.5.2 Design Timing Manipulation Strategy

With the above infrastructure, the remaining question is where to put the request and

confirm APIs given a message timing bug report (s, t). The confirm APIs can be simply

inserted right after the heap access in the bug report. Therefore, our discussion below focuses

on the placement of request APIs.

The naive solution is to put request right before s and t. However, this naive approach

may lead to hangs or too many request messages sent to the controller server due to the

huge number of dynamic instances ofs or t. DCatch provides the following analysis to help

solve this problem, both are unique to triggering message timing bugs.

First, DCatch warns about potential hangs caused by poor placements ofrequest in the

following three cases and suggests non-hang placements. (1) Ifs and t are both inside event

handlers and their event handlers correspond to a single-consumer queue, DCatch warns

about hangs and suggests puttingrequest in corresponding event enqueue functions. (2)
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If s and t are both inside RPC handlers and their RPC functions are executed by the same

handling thread in the same node, DCatch suggests puttingrequest in corresponding RPC

callers. (3) If s and t are inside critical sections guarded by the same lock, DCatch suggests

putting request right before the corresponding critical sections. DCatch gets the critical

section information based on lock-related records in its trace, as discussed in Chapter 4.3.1.

Second, DCatch warns about large number of dynamic instances ofs and t and suggest

better placements. The message timing bug report will contain call-stacks fors and t.

When DCatch checks the run-time trace and �nds a large number of dynamic instances of

the corresponding call-stack fors (same fort), DCatch will check its happens-before graph

to �nd an operation o in a di�erent node that causess, and checks whethero is a better

place for request . This analysis is very e�ective: many event handlers and RPC functions

are always executed under the same call stack, and hence could make bug triggering very

complicated without this support from DCatch.

4.6 Implementation

DCatch is implemented using WALA v1.3.5 and Javassist v3.20.0 for a total of 12 KLOC.

Below are more details.

HB-related operation tracing DCatch traces HB-related operations using Javassist, a

dynamic Java bytecode re-writing tool, which allows us to analyze and instrument Java

bytecode whenever a class is loaded.

All thread-related operations can be easily identi�ed following thejava.lang.Thread in-

terface. Event handling is implemented usingorg.apache.hadoop.yarn.event.EventHandler

and org.apache.hadoop.hbase.executor.EventHandler interface in Hadoop and HBase.

The prototype of an handler function isEventHandler::handle (Event e) . Cassandra and

ZooKeeper use their own event interfaces. The way handler functions are implemented and
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invoked are similar as that in Hadoop/HBase.

For RPC, HBase and early versions of Hadoop share the same RPC library interface,

VersionedProtocol . All methods declared under classes instantiated from this interface

are RPC functions, and hence can be easily identi�ed. Later versions of Hadoop use a

slightly di�erent interface, ProtoBase, but the way to identify its RPC functions is similar.

For socket, Cassandra has a superclassIVerbHandler to handle socket communica-

tion and every message sending is conducted byIVerbHandler::sendOneWay (Message,

EndPoint) . DCatch can easily identify all such function calls, as well as the message ob-

ject. ZooKeeper uses a super-classRecord for all socket messages. DCatch identi�es socket

sending and receiving based on howRecord objects are used.

Memory access tracing DCatch �rst uses WALA, a static Java bytecode analysis frame-

work, to statically analyze the target software, identi�es all RPC/socket/event related func-

tions, and stores the result. DCatch then uses Javassist to insert tracing functions before

every heap access (getfield / putfield instruction) or static variable access (getstatic /

putstatic instruction) in functions identi�ed above.

Tagging RPC DCatch statically transforms the target software, adding one extra param-

eter for every RPC function and one extra �eld in socket-message object, and inserting the

code to generate a random value for each such parameter/�eld at the invocation of every

RPC/socket-sending function. DCatch tracing module will record this random number at

both the sending side and the receiving side, allowing trace analysis to pair message sending

and receiving together.

Portability of DCatch As described above, applying DCatch to a distributed software

project would require the following information about that software: (1) what is the RPC

interface; (2) what are socket messaging APIs; (3) what are event enqueue/handler APIs; (4)
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BugID LoC Workload Symptom Error Root

CA-1011 61K startup Data backup failure DE AV
HB-4539 188K split table & alter table System Master Crash DE OV
HB-4729 213K enable table & expire server System Master Crash DE AV
MR-3274 1,266K startup + wordcount Hang DH OV
MR-4637 1,388K startup + wordcount Job Master Crash LE OV
ZK-1144 102K startup Service unavailable LH OV
ZK-1270 110K startup Service unavailable LH OV

Table 4.3: DCatch Benchmark Bugs and Applications.

whether the event queues are FIFO and whether they have one or multiple handler threads.

In our experience, providing the above speci�cations is straightforward and reasonably

easy, because we only need to identify a small number of (RPC/event/socket) interfaces or

prototypes, instead of a large number of instance functions. We also believe that the above

speci�cations are necessary for accurate message timing bug detection in existing distributed

systems, just like specifying pthread functions for LCbug detection and specifying event

related APIs for asynchronous-race detection.

4.7 Evaluation

4.7.1 Methodology

Benchmarks We evaluate DCatch on seven timing-related problems reported by real-

world users in four widely used open-source distributed systems: Cassandra distributed key-

value stores (CA); HBase distributed key-value stores (HB); Hadoop MapReduce distributed

computing framework (MR); ZooKeeper distributed synchronization service (ZK). These

systems range from about 61 thousand lines of code to more than three million lines of code,

as shown in Table 4.3.

We obtain these benchmarks from TaxDC benchmark suite [51]. They are all triggered by

untimely communication across nodes. As shown in Table 4.3, they cover all common types of
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failure symptoms: job-master node crash, system-master node crash, hang, etc. They cover

di�erent patterns of errors: local explicit error (LE), local hang (LH), distributed explicit

error (DE), distributed hang (DH). Here, local means on the same machine as the root-cause

memory accesses; distributed means on a di�erent machine from the root-cause accesses.

They also cover di�erent root causes: order violations (OV) and atomicity violations (AV).

Experiment settings We use failure-triggering workloads described in the original user

reports, as shown in Table 4.3. They are actually common workloads: system startups in

Cassandra and ZooKeeper; alter a table and then split it in HBase; enable a table and then

crash a region-server in HBase; run WordCount (or any MapReduce job) and kill the job

before it �nishes in MapReduce. Note that, due to the non-determinism of message timing

bugs, failures rarely occur under these workload. DCatch detects message timing bugs by

monitoring correct runs of these workload.

We run each node of a distributed system in one virtual machine, and run all VMs in

one physical machine (M1), except for HB-4539, which requires two physical machines (M1

& M2). Both machines use Ubuntu 14.04 and JVM v1.7. M1 has IntelR
 XeonR
 CPU E5-

2620 and 64GB of RAM. M2 has IntelR
 CoreTM i7-3770 and 8GB of RAM. We connect M1

and M2 with Ethernet cable. All trace analysis and static pruning are on M1. After the

static pruning in Chapter 4.4, all the remaining bug candidates are consideredDCatch bug

reports . We will then try to trigger each reported bug leveraging the DCatch triggering

module. Note that, the triggering result doesnot change the count of DCatch bug reports.

Evaluation metrics We will evaluate the following aspects of DCatch: the coverage and

accuracy of bug detection, and the overhead of bug detection, including run-time overhead,

o�-line analysis time, and log size. All the performance numbers are based on an average of

5 runs. We will also compare DCatch with a few alternative designs.

We will put a DCatch bug report (s, t) into one of three categories: ifs and t are not
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BugID
Detected? #Static Ins. Pair #CallStack Pair

Bug Benign SerialBug Benign Serial

CA-1011 X 31 0 0 51 2 0
HB-4539 X 33 0 1 33 0 1
HB-4729 X 44 1 0 55 5 0
MR-3274 X 21 0 4 21 0 9
MR-4637 X 11 2 4 11 3 9
ZK-1144 X 51 1 1 51 1 1
ZK-1270 X 61 2 0 61 2 0

Total* 2012 5 7 2313 12 12

Table 4.4: DCatch Bug Detection Results

concurrent with each other, it is aserial report (i.e., not concurrent); if s and t are concurrent

with each other, but their concurrent execution does not lead to failures, it is abenign bug;

if their concurrent execution leads to failures, it is a truebug.

We report message timing bug counts by the unique number of static instruction pairs

and the unique number of callstack pairs as shown in Table 4.4. Since these two numbers do

not di�er much, we use static-instruction count by default unless otherwise speci�ed.

4.7.2 Bug Detection Results

Overall, DCatch has successfully detected message timing bugs for all benchmarks while

monitoring correct execution of these applications, as shown by theX in Table 4.4. In

addition, DCatch found a few truly harmful message timing bugs we were unaware of and

outside the TaxDC suite [51]. DCatch is also accurate: only about one third of all the 32

DCatch bug reports are false positives based on static count.

Harmful bug reports DCatch has found root-cause message timing bugs for every bench-

mark. In some cases, DCatch found multiple root-cause message timing bugs for one bench-

mark. For example, in HB-4729, users report that \clash between region unassign and split-

ting kills the master". DCatch found that one thread t1 could delete a zknode concurrently
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with another thread t2 reads this zknode and deletes this zknode. Consequently, multiple

message timing bugs are reported here between delete and reads, and between delete and

delete. They are all truly harmful bugs: any one of these zknode operations int2 would fail

and cause HMaster to crash, if the delete fromt1 executes right before it.

DCatch also found a few harmful message timing bugs, 8 in static count and 10 in

callstack count, that go beyond the 7 benchmarks. We were unaware of these bugs, and

they are not part of the TaxDC bug suite. We have triggered all of them and observed their

harmful impact, such as node crashes and unavailable services, through DCatch triggering

module. We have carefully checked the change log of each software project, and found that

two among these 8 message timing bugs have never been discovered or patched and the

remaining have already been patched by developers in later versions.

Benign bug reports DCatch only reported few benign message timing bugs, 5 out of

32 across all benchmarks, bene�ting from its static pruning module. In Cassandra, DCatch

reports some message timing bugs that can indeed cause inconsistent meta-data across nodes.

However, this inconsistency will soon get resolved by the next gossip message. Therefore,

they are benign. Other benign reports are similar. Note that, for CA-1011, the benign report

count is 0 in static count but 2 in callstack count, because the two benign reports share the

same static identities with some truly harmful bug reports.

Serial bug reports DCatch HB model and HB analysis did well in identifying concur-

rent memory accesses. For only 7 out of 32 message timing bug reports, DCatch mistakenly

reports two HB-ordered memory accesses as concurrent. Some of them are caused by uniden-

ti�ed RPC functions, which do not follow the regular prototype and hence are missed by

our static analysis. Some of them are caused by custom synchronization related to address

transfer [100]. The remaining are caused by distributed custom synchronization. For ex-

ample, ZK has a functionwaitForEpoch, essentially a distributed barrier | accesses before
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BugID
#Static Ins. Pair #Callstack Pair

TA TA+SP TA+SP+LP TA TA+SP TA+SP+LP

CA-1011 46 4 3 175 9 7
HB-4539 24 4 4 57 5 4
HB-4729 52 6 5 219 12 10
MR-3274 53 8 6 553 18 11
MR-4637 61 8 7 568 21 13
ZK-1144 29 8 7 52 8 7
ZK-1270 25 10 8 25 10 8

Table 4.5: # of message timing bugs reported by DCatch trace analysis

waitForEpoch in n1 happens before accesses after correspondingwaitForEpoch in n2. The

implementation of waitForEpoch is complicated and cannot be inferred by existing HB rules.

Single-machine custom synchronization is an important research topic in LCbug detection

[89, 93]. DCatch is just a starting point for research on distributed custom synchronization.

DCatch false-positive pruning As shown in Table 4.5, our static pruning pruned out a

big portion of message timing bug candidates reported by DCatch trace analysis: less than

10% of message timing bug candidates (callstack count) remain after the static pruning for

CA, HB, and MR benchmarks.

To evaluate the quality of static pruning, we randomly sampled and checked 35 message

timing bug candidates that have been pruned out, 5 from each benchmark. We found that

all of them are indeed false positives. A few of them would lead to exceptions, but the

exceptions are well handled with only warning or debugging messages printed out through

LOG.warnor LOG.debug.

Of course, our static pruning could prune out truly harmful bugs. However, given the

huge number of message timing bug candidates reported by DCatch trace analysis, DCatch

static pruning is valuable for prioritizing the bug detection focus.

Finally, our loop-based synchronization analysis is e�ective (Chapter 4.3.2). This analysis

discovers both local while-loop custom synchronization and distributed pull-based custom

53



synchronization. It pruned out false positives even after the intensive static pruning for all

benchmarks, as shown in Table 4.5.

Triggering Overall, DCatch triggering module has been very useful for us to trigger mes-

sage timing bugs and prune out false positives. As shown in Table 4.4, among the 47 DCatch

bug reports with unique call stacks, the triggering module is able to automatically con�rm

35 of them to be true races, with 23 of them causing severe failures, and the remaining 12

to be false positives in DCatch race detection.

The analysis conducted by DCatch about how to avoid hangs (challenge-1) and avoid large

numbers of dynamic requests (challenge-2) is crucial to trigger many DCatch bug reports.

In fact, the naive approach that inserts request just before the racing heap accesses failed

to con�rm 23 DCatch bug reports to be true races, out of the total 35 true races, exactly due

to these two challenges. DCatch handles the challenge-1 by puttingrequests outside critical

sections (17 cases) or outside event/RPC handlers (6 cases), and handles the challenge-2 by

moving the requests along the happens-before graph into nodes di�erent from the original

race instructions (2 cases), exactly like what described in Chapter 4.5.2. To avoid hangs,

DCatch �rst move request from inside RPC handlers into RPC callers and then move

request to be right outside the critical sections that enclose corresponding RPC callers.

Of course, DCatch triggering module is not perfect. We expect two remaining challenges

that it could encounter. First, DCatch cannot guarantee to �nd a location along the HB

chains with few dynamic instances. Automated message timing bug triggering would be

challenging in these cases, if failures only happen at a speci�c dynamic instance. The current

prototype of DCatch focuses on the �rst dynamic instance of every racing instruction. This

strategy allows DCatch to trigger the desired executing order among race instructions with

100% frequency for 33 true races in DCatch bug reports and with about 50% frequency for the

remaining 2 true races. Second, DCatch does not record all non-deterministic environmental

events and hence its triggering module may fail to observe a race instruction whose execution
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depends on unrecorded non-deterministic events.

False negative discussion DCatch is de�nitely not a panacea. DCatch could miss mes-

sage timing bugs for several reasons. First, given how its static pruning is con�gured, the

current prototype of DCatch only reports message timing bugs that lead to explicit failures,

as discussed in Chapter 4.4.1. True message timing bugs that lead to severe but silent failures

would be missed. This problem could be addressed by skipping the static pruning step, and

simply applying the triggering module for all message timing bug candidates. This could be

an option if the testing budget allows. Second, DCatch selectively monitors only memory

accesses related to inter-node communication and corresponding computation. This strategy

is crucial for the scalability of DCatch, as we will see soon in Chapter 4.7.4. However, there

could be message timing bugs that are between communication-related memory accesses

and communication-unrelated accesses. These bugs would be missed by DCatch. Fortu-

nately, they are very rare in real world based on our study. Third, DCatch may not process

extremely large traces. The scalability bottleneck of DCatch, when facing huge traces, is

its trace analysis. It currently takes about 4G memory for the three largest traces in our

benchmarks (HB-4729, MR-3274, and MR-4637). DCatch will need to chunk the traces and

conduct detection within each chunk, an approach used by previous LCbug detection tools.

4.7.3 Performance Results

Run-time and o�-line analysis time As shown in Table 4.6, DCatch performance is

reasonable for in-house testing. DCatch tracing causes 1.9X { 5.5X slowdowns across all

benchmarks. Furthermore, we found that up to 60% of the tracing time is actually spent in

dynamic analysis and code transformation in Javassist. If we use a static instrumentation

tool, the tracing performance could be largely improved. The trace analysis time is about

2{10 times of the baseline execution time. Fortunately, it scales well, roughly linearly, with
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BugID Base Tracing Trace Analysis Static Pruning Trace Size

CA-1011 6.6s 13.0s 15.9s 324s 7.7MB
HB-4539 1.1s 3.8s 11.9s 87s 4.9MB
HB-4729 3.5s 16.1s 36.8s 278s 19MB
MR-3274 21.2s 94.4s 62.2s 341s 22MB
MR-4637 11.7s 36.4s 51.5s 356s 18MB
ZK-1144 0.8s 3.6s 4.8s 25s 1.9MB
ZK-1270 0.2s 1.1s 4.5s 15s 1.3MB

Table 4.6: DCatch Performance Results

BugID Total Mem RPC/Socket Event Thread Lock

CA-1011 19,984 17,722 0 / 196 0 634 1432
HB-4539 3,907 3,233 260 / 0 21 89 304
HB-4729 11,297 9,694 449 / 0 18 144 992
MR-3274 31,526 23,528 752 / 0 3,540 1,390 2316
MR-4637 24,437 17,201 406 / 0 2,996 1,780 2054
ZK-1144 3,820 3,303 0 / 120 0 79 318
ZK-1270 5,367 4,227 0 / 389 0 329 422

Table 4.7: Break-downs of # of Major Types of Trace Records in DCatch

the trace size: taking about 2{3 second to process every 1MB of trace.

The static pruning phase takes 15 seconds to about 6 minutes for each benchmark. It is

the most time consuming phase in DCatch as shown in the table. 20% { 89% of this analysis

time is spent for WALA to build the Program Dependency Graph (PDG). Therefore, the

pruning time would be greatly reduced, if future work can pre-compute the whole program

PDG, store it to �le, and load it on demand.

The time consumed by loop-based synchronization analysis is negligible comparing with

tracing, trace analysis, and static pruning, and hence is not included in Table 4.6.

Tracing Details DCatch produces 1.2{21MB of traces for these benchmarks. These traces

could have been much larger if DCatch did not selectively trace memory accesses, as we

will see in Table 4.8. As shown in Table 4.7, these traces mostly contain memory access

information. There are also a good number of RPC, socket, event, and thread related

56



BugID Trace Size Tracing Time TraceAnalysis Time

CA-1011 77MB 15.9s Out of Memory
HB-4539 26MB 10.2s 64.5s
HB-4729 60MB 49.9s Out of Memory
MR-3274 839MB 215.3s Out of Memory
MR-4637 639MB 137.8s Out of Memory
ZK-1144 6.9MB 5.7s 6.5s
ZK-1270 25MB 4.4s 232.7s

Table 4.8: Full Memory Tracing Results.

records in DCatch traces. MapReduce benchmarks particularly have many event and thread

related records, because MapReduce heavily uses event-driven computation. There are many

event-handling threads and many event handlers further spawn threads. On the other hand,

our workload did not touch the event-driven computation part of Cassandra and Zookeeper,

consequently their traces do not contain event operations.

4.7.4 Comparison with Alternative Designs

Unselective memory-access logging DCatch tracing only selectively traces memory

accesses related to inter-node communication and computation. This design choice is crucial

in making DCatch scale to real-world systems. As shown in Table 4.8, full memory-access

tracing will increase the trace size by up to 40 times. More importantly, for 4 out of the 7

benchmarks, trace analysis will run out of JVM memory (50GB of RAM) and cannot �nish.

Alternative HB design DCatch HB model contains many rules. We want to check

whether they have all taken e�ects in message timing bug detection, particularly those rules

that do not exist in traditional multi-threaded programs. Therefore, we evaluated how many

extra false positives and false negatives are reported by DCatch trace analysis when it ignores

event, RPC, socket, and push-synchronization operations in traces, respectively, as shown in

Table 4.9. Note that, the traces are the same as those used to produce results in Table 4.4,
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BugID
#Static Ins. Pair #Callstack Pair

Event RPC Soc Push Event RPCSoc Push

CA-1011 - - - - - -
HB-4539 - -3/+35 -3/+35 - -12/+115 -11/+110
HB-4729 - -7/+37 -9/+36 - -23/+109 -24/+106
MR-3274 -46/+4 -5/+16 - -349/+ 8 -20/+ 18 -
MR-4637 -51/+4 -4/+17 - -369/+11 -24/+ 20 -
ZK-1144 - - - - - -
ZK-1270 - - - - - -

Table 4.9: False negatives (before `/') and false positives (after `/') of ignoring certain HB-
related operations

except that some trace records are ignored by analyzer.

Overall, modeling these HB-related operations areall very useful. Excluding any one

type of them would lead to a good number of false positives and false negatives for multiple

benchmarks, as shown in Table 4.9.

The false positives are easy to understand. Without these operations, corresponding

HB relationships, related to Rule-Eenq, Rule-MRPC, Rule-Msoc, and Rule-Mpush, would be

missed by trace analysis. Consequently, some memory access pairs would be mistakenly

judged as concurrent.

The false negatives are all related to Rule-Pnreg. For example, when event-handlerBegins

and Ends are not traced, DCatch trace analysis would conclude that all memory accesses

from the same event-handling thread are HB ordered. Consequently, DCatch would miss

message timing bugs caused by con
icting memory accesses from concurrent event handlers.

The same applies to false negatives caused by not tracking RPC/socket and Push-based

synchronization operations.

Finally, CA-1011 and the two ZK benchmarks did not encounter extra false positives

or negatives in static/callstack counts3 due to lucky \ two wrongs make a right": ignoring

3. CA-1011 did encounter 8% more false positives in raw counts { each pair of callstacks may have many
dynamic instances.
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socket-related operations misses some true HB relationships and also mistakenly establishes

some non-existing HB relationships. Imagine noden1 sends a messagem1 to noden2, and n2

sendsm2 back in response. Tracing socket operations or not would both reach the conclusion

that send m1 happens before receivem2 on n1, through di�erent reasoning. Tracing socket

operations provide correct HB relationships:Send (m1, n1) M soc
=== ) Recv (m1, n2) Pnreg

=== )

Send (m2, n2) M soc
=== ) Recv (m2, n1). Not tracing socket would mistakenly apply Rule-Preg

to message-handling threads, and do the wrong reasoning:Send (m1, n1) P reg
===) Recv (m2,

n1). In short, tracing socket operations is still useful in providing accurate HB relationships.

4.8 Conclusion

Message timing bugs severely threat the reliability of distributed systems. They linger even

in distributed transaction implementations [18, 51, 75]. In this Chapter, we designed and im-

plemented an automated message timing bug detection tool for large real-world distributed

systems. The DCatch happens-before model nicely combines causality relationships previ-

ously studied in synchronous and asynchronous single-machine systems and causality rela-

tionships unique to distributed systems. The four components of DCatch tool are carefully

designed to suit the unique features of message timing bugs and distributed systems. The

triggering module of DCatch can be used as a stand-alone testing framework. We believe

DCatch is just a starting point in combating message timing bugs. The understanding

about false negatives and false positives of DCatch will provide guidance for future work in

detecting message timing bugs.
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CHAPTER 5

FCATCH: AUTOMATICALLY DETECTING FAULT TIMING

BUGS IN CLOUD SYSTEMS

It is crucial for distributed systems to achieve high availability. Unfortunately, this is chal-

lenging given the common component failures (i.e., faults). Developers often cannot an-

ticipate all the timing conditions and system states under which a fault might occur, and

introduce fault timing bugs, a new type of DCbugs, that only manifest when a node crashes

or a message drops at a special moment. Although challenging, modeling and detecting

fault timing bugs are fundamental to developing highly available distributed systems. Un-

like previous work that relies on fault-injection to expose fault timing bugs, this chapter

carefully models fault timing bugs as a new type of concurrency bugs, and develops FCatch

[57] to automatically predict fault timing bugs by observing correct execution. Evaluation on

four representative cloud-scale distributed systems shows that FCatch is e�ective, accurately

�nding severe fault timing bugs.

5.1 Introduction

5.1.1 Motivation

Fault timing bugs are di�cult to expose during in-house testing due to their complicated

triggering conditions | component failures, which need to be injected during testing, have

to occur under special timing. As a result, they widely exist in deployed distributed systems

[51, 34, 15].

Fault timing bugs are alsounique to distributed systems, as single-machine systems,

except for storage systems, are not expected to tolerate node crashes.

Figure 5.1 illustrates a fault timing bug from Hadoop-MapReduce. Here, a task attempt

contacts Application Manager (AM) through an RPCCanCommitto get commit permission

60



Figure 5.1: An example of fault timing bugs from MapReduce

and get its attempt-ID ta1 recorded. Soon later, it will inform AM that it has successfully

committed through DoneCommit. Hadoop usually can tolerate a task-attempt crash: if the

crash is after DoneCommit, no recovery is needed as the global state is consistent; if the

crash is beforeCanCommit, another attempt ta2 will redo the task. Unfortunately, if the

attempt crashes between the two RPC calls, which is a small time window comparing with

the attempt's whole life time, the job will never �nish. The reason is thatT.commit on AM

has been contaminated by the crashed attemptta1 , causing every recovery attempt to fail

the CanCommitchecking.

As we can see, the complexity of fault timing bugs is inherent to distributed systems,

where nodes interact with each other through global �les and messages. When a nodeNCrash

crashes, its remaining states scatter around the system, including global �les updated by

NCrash, remaining nodes' heaps updated by RPC functions remotely invoked byNCrash

(e.g., T.commit on AM in Figure 5.1), and others. Depending on which node crashes at

which point of the system execution, di�erent system states could be left behind and demand

di�erent handling from the remaining live nodes and the recovery routine. Searching the

huge state space of a distributed system for small time windows where a particular node's

crash is improperly handled is a daunting task.

The state of practice in catching fault timing bugs is ine�ective. It injects faults randomly,

hoping to hit small bug-triggering time windows through many tries. Previous work [17] and

our own experiments all show that real-world fault timing bugs often do not manifest even
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after hundreds of such random fault-injection runs with bug-triggering workload.

Recent research improves the e�ciency of fault-injection testing, leveraging manual speci-

�cation or expert knowledge of the system under test. Distributed-system model checkers use

heuristics, like injecting faults only at message sending/receiving points, and rules speci�ed

by developers to avoid some unnecessary fault injections [33, 46, 50, 87, 96]. Lineage-driven

fault injectors [16, 17] require system models manually written in a domain speci�c language.

Some recent e�ort relies on domain experts to decide which part of the system is important

and hence should take fault injection [15, 27, 30].

Although recent work has achieved great progresses, they all require much manual e�ort

and/or deep understanding of the system under test. Furthermore, they still struggle at

searching through the huge state space of distributed systems, with most (e.g.> 99%) of

their carefully designed fault injections not revealing any fault timing bugs [27, 15, 30, 50].

5.1.2 Contributions

Di�erent from previous work that relies on random or manually-guided fault injections to

hit fault timing bugs, our tool FCatch uses program analysis to automaticallypredict fault

timing bugs with high accuracy, without manual speci�cation or domain knowledge about the

software under test. That is, by observing a correct execution with no faults or a successfully

recovered fault at timet, FCatch can predict that the system execution would fail when a

fault occurs at t0 (t06= t).

A new fault timing bug model FCatch is built upon a new model of fault timing bugs.

Di�erent from previous work that essentially models fault timing bugs as semantic bugs, and

hence requires semantic speci�cations in bug detection. We model fault timing bugs as a

type of concurrency bugs, with two key properties:

� Triggering conditions: a fault timing bug is triggered by a special timing of faultf . If
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the fault f , like the task-attempt crash in Figure 5.1, occurs a bit earlier or later, the

system would behave correctly.

� Root causes: once triggered, a fault timing bug can cause system failures when the

faulty node NCrash leaves a shared resource in a state that cannot be handled by

another nodeN . For example, the failure in Figure 5.1 is caused by the original task

attempt leaving a non-NULL T.commit in AM that cannot be handled by the recovery.

Starting from these two key properties, other detailed properties of fault timing bugs can

then be reasoned about and guide fault timing bug detection, which we will describe more

in Chapter 5.2.

A new fault timing bug detection approach This model provides new opportunities

to detect fault timing bugs.

� The triggering conditions suggest that we can predict fault timing bugs by analyzing

correct runs to see whether/how the system might behave di�erently when the time

of fault changes. This approach uses runs under common timing and workload as

correctness speci�cations, greatly reducing manual e�ort in fault timing bug detection.

� The root causes suggest that we can predict fault timing bugs by analyzing operations

that read and write the same resource from di�erent nodes, referred to ascon
icting

operations. This approach can help greatly shrink the fault timing bug search space,

avoiding unnecessary checking.

FCatch Following the above observations and approach, we build FCatch that predicts

fault timing bugs in three main steps, as shown in Figure 5.2.

First, FCatch monitors correct fault-free or faulty runs of a distributed system, tracing

resource-access operations and fault-tolerance related operations. Particularly, FCatch care-

fully designs which correct runs to monitor | a fault timing bug like that in Figure 5.1
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Figure 5.2: The 
ow of FCatch

requires monitoring and comparing more than one correct run to discover | and what to

trace for each run. The details are presented in Chapter 5.3.

Second, FCatch analyzes traces to identify pairs of con
icting operations that write and

read the same resource, such as data in heap or persistent storage, from di�erent nodes.

Particularly, following our fault timing bug model in Chapter 5.2, FCatch adapts traditional

happens-before analysis to identify every pair of con
icting operations whose interaction can

potentially be perturbed by the time of fault. The details are in Chapter 5.4.

Third, FCatch analyzes the distributed system to identify con
icting operations that

are not protected by existing fault-tolerance mechanisms such as timeouts, sanity checks,

and data resets. These operations are referred to as fault-intolerant operations. They are

reported by FCatch as fault timing bugs. The details will be presented in Chapter 5.4.

Finally, FCatch tries to trigger every fault timing bug reported above, helping developers

con�rm which reported bugs can truly cause failures. The details are in Chapter 5.5.

We evaluated FCatch using a set of 7 fault timing bugs collected by an existing benchmark

suite of real-world distributed-system concurrency bugs [51]. These 7 fault timing bugs come

from 4 widely used distributed systems, Cassandra, HBase, MapReduce, and ZooKeeper, and

can be triggered by 6 common workloads under special time of faults.

By analyzing only one or twocorrect runs of each workload, FCatch generates 31 fault

timing bug reports. These include 8 reports that explain the 7 benchmarks, 8 reportsthat

are truly severe fault timing bugs beyond the initial benchmark suite [51], which we were
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Figure 5.3: Con
icting operations in a crash-regular bug.

unaware of before our experiments, 6 that cause well-handled exceptions, and 9 that are

benign. All the false positives can be easily pruned by FCatch's automated bug-triggering

module. In comparison, only one out of all these bugs could be exposed after 400 fault-

injection runs of corresponding bug-triggering workload, and even this one bug has less than

3% of manifestation rate. FCatch bug detection introduces 5X { 15X slowdown to the

baseline fault-free execution, suitable for in-house testing.

5.2 Modeling Fault Timing Bugs

We categorize fault timing bugs into two types: (1) crash-regular bugs, where con
icting

operations are from the crash nodeNCrash and a non-crash nodeNRegular, illustrated in

Figure 5.3; (2) crash-recovery bugs, where con
icting operations are from the crash node

NCrash and the recovery nodeNRecovery, exempli�ed in Figure 5.1 and Figure 5.4.

In the following, we present our detailed models of these two types of fault timing bugs,

which guide the design of FCatch.

Terminology We refer to faults as component, rather than system, failures that need to

be tolerated. Among di�erent types of faults, we focus on node crashes and message drops.
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We usefaults and crashesinterchangeably, unless otherwise speci�ed. When deploying a

distributed system, one can con�gure a process to run by itself or co-located with other

processes in a physical node. Therefore, we usenode and processinterchangeably. When

we say an operationO is from a nodeN , O could be physically executing onN or causally

initiated by N , like in an RPC function remotely invoked byN . Chapter 5.4.1 presents how

we analyze such causal relationships. Thehappens-beforerelationship discussed below is the

same logical timing relationship discussed in previous work [48, 56], which we will elaborate

in Chapter 5.4.1.

5.2.1 Crash-regular Fault Timing Bugs

What are these bugs? As shown in Figure 5.3a, by de�nition, a crash-regular bug man-

ifests when a crash causes a regular nodeNRegular to read, denoted byR, a shared resource

de�ned by an unexpected sourceWbad in node NCrash.

Thinking about why the time of fault could make Wbad an unexpected source forR

reveals more information:

1. The expected source forR, denoted asWgood, must execute afterWbad from NCrash

during correct runs (i.e., Figure 5.3b), and consequently could disappear due to un-

timely crashes in incorrect runs (i.e., Figure 5.3a). Otherwise, ifWgood executes before

Wbad, it would not be a�ected by any crashes afterWbad and hence leaves no chances

for any crashes to makeR read from Wbad instead ofWgood.

2. Wgood must always execute beforeR during correct runs. That is,Wgood must happen

beforeR. Otherwise, if it is concurrent with R, Wbad could become a source forR even

without untimely crashes.

3. The disappearance ofWgood must block the execution ofR (e.g., the missing of a

signal causing await to block forever), leading to failures. As we will discuss in
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Figure 5.4: Con
icting operations in a crash-recovery bug.

Chapter 5.4.1, given thatWgood happens beforeR, the only other possibility is that

Wgood's disappearance causes the whole thread/function ofR to disappear (e.g., the

missing of an RPC call causing the RPC-handler not to execute), which is a natural

consequence of the node crash yet not a bug.

4. There must be no fault-tolerance mechanism that can unblockR. For example, with

a timeout, a common fault-tolerance mechanism, the above bad interaction between

Wbad and R would have been tolerated.

This gives us a pro�le of a crash-regular fault timing bug. It is related to a pair of

con
icting operations f W, Rg. R consumes the state of a shared resource, which is a heap

object on a non-crash node or persistent storage data anywhere, de�ned byW during correct

runs (i.e., Wgood in Figure 5.3). When the node, whichW comes from, crashes beforeW,

R's execution is blocked forever, causing hangs and related failures.

How to detect these bugs? With the above model, instantiating the general 
ow in

Figure 5.2 to detect crash-regular fault timing bugs is straightforward.

First, FCatch monitors a fault-free run of the target system, recording resource-access

operations, happens-before operations, and time-out operations (Chapter 5.3).

Second, FCatch identi�es pairs of con
icting operations from di�erent nodes that have

blocking happens-before relationship with each other (Chapter 5.4.2).
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